Skip to main content
Log in

An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Our studies showed that an apple B-box protein, MdCOL11, the homolog of AtBBX22, is involved in UV-B- and temperature-induced anthocyanin biosynthesis in apple peel.

Anthocyanin is responsible for the red pigmentation in apple peel and a R2R3 MYB gene, MdMYBA/1/10, a homolog of MdMYBA, controls its accumulation. Arabidopsis PAP1 is under the control of a series of upstream factors involved in light signal transduction and photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5) and B-box family (BBX) proteins. In this study, we identified and characterized the homolog of Arabidopsis BBX22 in apple, designated as MdCOL11. Overexpression of MdCOL11 in Arabidopsis enhanced the accumulation of anthocyanin. In apples, MdCOL11 was differentially expressed in all tissues, with the highest expression in petals and the lowest expression in the xylem. Transcripts of MdCOL11 noticeably accumulated at the ripening stage, concomitant with increases in the expressions of anthocyanin biosynthesis-related genes. In an in vitro treatment experiment, MdCOL11 was upregulated in an ultra-violet (UV)-B- and temperature-dependent manner, together with the inductions of anthocyanin biosynthesis-related genes and anthocyanin accumulation in apple peel. Furthermore, a dual-luciferase assay indicated that (1) MdCOL11 regulated the expression of MdMYBA and (2) MdCOL11 was a target of MdHY5. Taken together, our results suggest that MdCOL11 is involved in MdHY5-mediated signal transduction and regulates anthocyanin accumulation in apple peel, which sheds new light on anthocyanin accumulation in apples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACE:

ACGT-containing element

ANS:

Anthocyanidin synthase

BBX:

B-box protein

EBG:

Early-stage biosynthesis gene

CHS:

Chalcone synthase

CHI:

Chalcone isomerase

COL:

CONSTANS-like

COP1:

CONSTITUTIVE PHOTOMORPHOGENIC 1

DFR:

Dihydroflavonol 4-reductase

F3H:

Flavanone 3 β-hydroxylase

HY5:

ELONGATED HYPOCOTYL 5

LBG:

Late-stage biosynthetic gene

MBW:

MYB-bHLH-WD40/WDR complex

UFGT:

UDP-glucose:flavonoid-3-O-glucosyltransferase

FL:

White fluorescent light

LUC:

Firefly luciferase

RLUC:

Renilla luciferase

References

  • Akagi T, Katayama-Ikegami A, Kobayashi S, Sato A, Kono A, Yonemori K (2012) Seasonal abscisic acid signal and a basic leucine zipper transcription factor, DkbZIP5, regulate proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol 158:1089–1102

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ang L, Chattopadhyay S, Wei N, Oyama T, Okada K, Batschauer A, Deng X (1998) Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol Cell 1:213–222

    Article  PubMed  CAS  Google Scholar 

  • Bai S, Kasai A, Yamada K, Li T, Harada T (2011) A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. J Exp Bot 62:4561–4570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  PubMed  CAS  Google Scholar 

  • Catala R, Medina J, Salinas J (2011) Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci USA 108:16475–16480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chagne D, Carlisle C, Blond C, Volz R, Whitworth C, Oraguzie N, Crowhurst R, Allan A, Espley R, Hellens R, Gardiner S (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genom 8:212

    Article  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

  • Chang C, Li Y, Chen L, Chen W, Hsieh W, Shin J, Jane W, Chou S, Choi G, Hu J, Somerville S, Wu S (2008) LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J 54:205–219

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Maloof J, Wu S (2011) COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol 156:228–239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng F, Weeden N, Brown S (1996) Identification of co-dominant RAPD markers tightly linked to fruit skin color in apple. Theor Appl Genet 93:222–227

    Article  PubMed  CAS  Google Scholar 

  • Clough S, Bent A (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Crifo T, Petrone G, Lo Cicero L, Lo Piero A (2012) Short cold storage enhances the anthocyanin contents and level of transcripts related to their biosynthesis in blood oranges. J Agric Food Chem 60:476–481

    Article  PubMed  CAS  Google Scholar 

  • Datta S, Hettiarachchi C, Johansson H, Holm M (2007) SALT TOLERANCE HOMOLOG2, a B-box protein in Arabidopsis that activates transcription and positively regulates light-mediated development. Plant Cell 19:3242–3255

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Datta S, Johansson H, Hettiarachchi C, Irigoyen M, Desai M, Rubio V, Holm M (2008) LZF1/SALT TOLERANCE HOMOLOG3, an Arabidopsis B-Box protein involved in light-dependent development and gene expression, undergoes COP1-mediated ubiquitination. Plant Cell 20:2324–2338

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deng X, Caspar T, Quail P (1991) COP1—a regulatory locus involved in light-controlled development and gene-expression in Arabidopsis. Genes Dev 5:1172–1182

    Article  PubMed  CAS  Google Scholar 

  • Dixon R, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  PubMed  CAS  Google Scholar 

  • Espley R, Hellens R, Putterill J, Stevenson D, Kutty-Amma S, Allan A (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Espley R, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten H, Gardiner S, Hellens R, Allan A (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21:168–183

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Favory J, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M, Albert A, Cloix C, Jenkins G, Oakeley E, Seidlitz H, Nagy F, Ulm R (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fox J (2005) The R commander: a basic-statistics graphical user interface to R. J Stat Softw 14

  • Gangappa SN, Botto JF (2014) The BBX family of plant transcription factors. Trends Plant Sci 19:460–470. doi:10.1016/j.tplants.2014.01.010

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Hernandez A, Korban S (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437–438

    Article  CAS  Google Scholar 

  • Gonzalez A (2009) Pigment loss in response to the environment: a new role for the WD/bHLH/MYB anthocyanin regulatory complex. New Phytol 182:1–3

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holm M, Ma L, Qu L, Deng X (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev 16:1247–1259

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962

    Article  CAS  Google Scholar 

  • Khanna R, Kronmiller B, Maszle D, Coupland G, Holm M, Mizuno T, Wu S (2009) The Arabidopsis B-box zinc finger family. Plant Cell 21:3416–3420

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  PubMed  CAS  Google Scholar 

  • Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F, Wallace I, Wilm A, Lopez R, Thompson J, Gibson T, Higgins D (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lau O, Deng X (2012) The photomorphogenic repressors COP1 and DET1: 20 years later. Trends Plant Sci 17:584–593

    Article  PubMed  CAS  Google Scholar 

  • Lee J, He K, Stolc V, Lee H, Figueroa P, Gao Y, Tongprasit W, Zhao H, Lee I, Deng X (2007) Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19:731–749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Li G, Gao S, Martinez C, He G, Zhou Z, Huang X, Lee J, Zhang H, Shen Y, Wang H, Deng X (2010) Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22:3634–3649

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens R, Chagne D, Rowan D, Troggio M, Iglesias I, Allan A (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176–1190

    Article  PubMed  Google Scholar 

  • Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E, Rubio V, Uhrig J, Hulskamp M, Hoecker U (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Prescott A, Mackay S, Bartlett J, Vrijlandt E (1991) Control of anthocyanin biosynthesis in flowers of Antirrhinum majus. Plant J 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  PubMed  CAS  Google Scholar 

  • Osterlund M, Deng X (1998) Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsishypocotyl nuclei. Plant J 16:201–208

    Article  PubMed  CAS  Google Scholar 

  • Osterlund M, Hardtke C, Wei N, Deng X (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  PubMed  CAS  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pang Y, Wenger J, Saathoff K, Peel G, Wen J, Huhman D, Allen S, Tang Y, Cheng X, Tadege M, Ratet P, Mysore K, Sumner L, Marks M, Dixon R (2009) A WD40 repeat protein from Medicago truncatula is necessary for tissue-specific anthocyanin and proanthocyanidin biosynthesis but not for trichome development. Plant Physiol 151:1114–1129

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peng T, Saito T, Honda C, Ban Y, Kondo S, Liu J, Hatsuyama Y, Moriguchi T (2013) Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation. Physiol Plant 148:432–444

    Article  PubMed  CAS  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  PubMed  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Rizzini L, Favory J, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schafer E, Nagy F, Jenkins G, Ulm R (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  PubMed  CAS  Google Scholar 

  • Rowan D, Cao M, Lin-Wang K, Cooney J, Jensen D, Austin P, Hunt M, Norling C, Hellens R, Schaffer R, Allan A (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102–115

    Article  PubMed  CAS  Google Scholar 

  • Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5-dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49:981–994

  • Shin D, Choi M, Kim K, Bang G, Cho M, Choi S, Choi G, Park Y (2013) HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett 587:1543–1547

    Article  PubMed  CAS  Google Scholar 

  • Steyn W, Wand S, Jacobs G, Rosecrance R, Roberts S (2009) Evidence for a photoprotective function of low-temperature-induced anthocyanin accumulation in apple and pear peel. Physiol Plant 136:461–472

    Article  PubMed  CAS  Google Scholar 

  • Takos A, Jaffe F, Jacob S, Bogs J, Robinson S, Walker A (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  CAS  Google Scholar 

  • Ubi B, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci 170:571–578

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Li S, Zhang R, Zhao J, Chen Y, Zhao Q, Yao Y, You C, Zhang X, Hao Y (2012) The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. Plant Cell Environ 35:1884–1897

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Wang Z, Cheng X, Gao J, Zhang Z, Wang L (2013) 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples. Plant Growth Regul 69:295–303

    Article  CAS  Google Scholar 

  • Yamane T, Jeong S, Goto-Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54–59

    CAS  Google Scholar 

  • Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011a) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang Y, Zheng S, Liu Z, Wang L, Bi Y (2011b) Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings. J Plant Physiol 168:367–374

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ting Peng (National Navel Orange Engineering Research Center, College of Navel Orange, Gannan Normal University, China) for her critical assessment and valuable suggestions. This study was partly supported by the Japan Society for the Promotion of Science (No. 24-02214).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaya Moriguchi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, S., Saito, T., Honda, C. et al. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 240, 1051–1062 (2014). https://doi.org/10.1007/s00425-014-2129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2129-8

Keywords

Navigation