Lipid-dissolved γ-carotene, β-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits

Abstract

Main conclusion

High levels of β-carotene, lycopene, and the rare γ-carotene occur predominantly lipid-dissolved in the chromoplasts of peach palm fruits. First proof of their absorption from these fruits is reported.

The structural diversity, the physical deposition state in planta, and the human bioavailability of carotenoids from the edible fruits of diverse orange and yellow-colored peach palm (Bactris gasipaes Kunth) varieties were investigated. HPLC–PDA–MSn revealed a broad range of carotenes, reaching total carotenoid levels from 0.7 to 13.9 mg/100 g FW. Besides the predominant (all-E)-β-carotene (0.4–5.4 mg/100 g FW), two (Z)-isomers of γ-carotene (0.1–3.9 mg/100 g FW), and one (Z)-lycopene isomer (0.04–0.83 mg/100 g FW) prevailed. Approximately 89–94 % of total carotenoid content pertained to provitamin A carotenoids with retinol activity equivalents ranging from 37 to 609 µg/100 g FW. The physical deposition state of these carotenoids in planta was investigated using light, transmission electron, and scanning electron microscopy. The plastids found in both orange and yellow-colored fruit mesocarps were amylo-chromoplasts of the globular type, containing carotenoids predominantly in a lipid-dissolved form. The hypothesis of lipid-dissolved carotenoids was supported by simple solubility estimations based on carotenoid and lipid contents of the fruit mesocarp. In our study, we report first results on the human bioavailability of γ-carotene, β-carotene, and lycopene from peach palm fruit, particularly proving the post-prandial absorption of the rarely occurring γ-carotene. Since the physical state of carotenoid deposition has been shown to be decisive for carotenoid bioavailability, lipid-dissolved carotenoids in peach palm fruits are expected to be highly bioavailable, however, further studies are required.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

FW:

Fresh weight

RAE:

Retinol activity equivalents

TEM:

Transmission electron microscopy

TRL:

Triglyceride-rich lipoprotein

References

  1. Bauernfeind JC (1972) Carotenoid vitamin A precursors and analogs in foods and feeds. J Agric Food Chem 20:456–473

    PubMed  Article  CAS  Google Scholar 

  2. Ben-Amotz A, Lers A, Avron M (1988) Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  3. Boehm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50:221–226

    Article  CAS  Google Scholar 

  4. Borel P (2012) Genetic variations involved in interindividual variability in carotenoid status. Mol Nutr Food Res 56:228–240

    PubMed  Article  CAS  Google Scholar 

  5. Borel P, Grolier P, Armand M, Partier A, Lafont H, Lairon D, Azais-Braesco V (1996) Carotenoids in biological emulsions: solubility, surface-to-core distribution, and release from lipid droplets. J Lipid Res 37:250–261

    PubMed  CAS  Google Scholar 

  6. Britton G (1995) UV/visible spectroscopy. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1b., spectroscopy. Birkhäuser Verlag, Basel, Boston, Berlin, pp 13–62

    Google Scholar 

  7. Britton G (1998) Overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 3., Biosynthesis and metabolism. Birkhäuser Verlag, Basel, Boston, Berlin, pp 13–147

    Google Scholar 

  8. Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL, Schwartz SJ, White WS (2004) Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr 80:396–403

    PubMed  CAS  Google Scholar 

  9. Burns J, Fraser PD, Bramley PM (2003) Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 62:939–947

    PubMed  Article  CAS  Google Scholar 

  10. Castenmiller JJM, West CE (1998) Bioavailability and bioconversion of carotenoids. Annu Rev Nutr 18:19–38

    PubMed  Article  CAS  Google Scholar 

  11. De Rosso VV, Mercadante AZ (2007) Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from Amazonian fruits. J Agric Food Chem 55:5062–5072

    PubMed  Article  Google Scholar 

  12. Deruere J, Romer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. Devitt LC, Fanning K, Dietzgen RG, Holton TA (2010) Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.). J Exp Bot 61:33–39

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  14. Dias MG, Camões MFGFC, Oliveira L (2009) Carotenoids in traditional Portuguese fruits and vegetables. Food Chem 113:808–815

    Article  CAS  Google Scholar 

  15. FAO/WHO (2001) Vitamin A. Human vitamin and mineral requirements. FAO, Rome, pp 87–101

    Google Scholar 

  16. Ferruzzi MG, Nguyen ML, Sander LC, Rock CL, Schwartz SJ (2001) Analysis of lycopene geometrical isomers in biological microsamples by liquid chromatography with coulometric array detection. J Chromatogr B Biomed Sci Appl 760:289–299

    PubMed  Article  CAS  Google Scholar 

  17. Gamlieli-Bonshtein I, Korin E, Cohen S (2002) Selective separation of cis-trans geometrical isomers of β-carotene via CO2 supercritical fluid extraction. Biotechnol Bioeng 80:169–174

    PubMed  Article  CAS  Google Scholar 

  18. Garti N, Shevachman M, Shani A (2004) Solubilization of lycopene in jojoba oil microemulsion. JAOCS J Am Oil Chem Soc 81:873–877

    Article  CAS  Google Scholar 

  19. Hansmann P, Sitte P (1982) Composition and molecular structure of chromoplast globules of Viola tricolor. Plant Cell Rep 1:111–114

    PubMed  Article  CAS  Google Scholar 

  20. Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium and zinc. National Academy Press, Washington, DC

    Google Scholar 

  21. Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. Jatunov S, Quesada S, Díaz C, Murillo E (2010) Carotenoid composition and antioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Arch Latinoam Nutr 60:99–104

    PubMed  CAS  Google Scholar 

  23. Kishimoto S, Ohmiya A (2012) Carotenoid isomerase is key determinant of petal color of Calendula officinalis. J Biol Chem 287:276–285

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  24. Kopec RE, Riedl KM, Harrison EH, Curley RW Jr, Hruszkewycz DP, Clinton SK, Schwartz SJ (2010) Identification and quantification of apo-lycopenals in fruits, vegetables, and human plasma. J Agric Food Chem 58:3290–3296

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. Kopec RE, Schweiggert RM, Riedl KM, Carle R, Schwartz SJ (2013) Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, α-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma. Rapid Commun Mass Spectrom 27:1393–1402

    PubMed  Article  CAS  Google Scholar 

  26. Leterme P, García M-F, Londoño A-M, Rojas M-G, Buldgen A, Souffrant W-B (2005) Chemical composition and nutritive value of peach palm (Bactris gasipaes Kunth) in rats. J Sci Food Agric 85:1505–1512

    Article  CAS  Google Scholar 

  27. Marx M, Schieber A, Carle R (2000) Quantitative determination of carotene stereoisomers in carrot juices and vitamin supplemented (ATBC) drinks. Food Chem 70:403–408

    Article  CAS  Google Scholar 

  28. McLellan MR, Lind LR, Kime RW (1995) Hue angle determinations and statistical analysis for multiquadrant Hunter L, a, b data. J Food Qual 18:235–240

    Article  Google Scholar 

  29. Monge-Rojas R, Campos H (2011) Tocopherol and carotenoid content of foods commonly consumed in Costa Rica. J Food Compos Anal 24:202–216

    Article  CAS  Google Scholar 

  30. Mortensen A (2005) Analysis of a complex mixture of carotenes from oil palm (Elaeis guineensis) fruit extract. Food Res Int 38:847–853

    Article  CAS  Google Scholar 

  31. Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50:728–760

    PubMed  Article  CAS  Google Scholar 

  32. Nguyen M, Francis D, Schwartz S (2001) Thermal isomerisation susceptibility of carotenoids in different tomato varieties. J Sci Food Agric 81:910–917

    Article  CAS  Google Scholar 

  33. Nielsen JP (1943) Rapid determination of starch. An index to maturity in starchy vegetables. Ind Eng Chem Anal Ed 15:176–179

    Article  CAS  Google Scholar 

  34. Provesi JG, Dias CO, Amante ER (2011) Changes in carotenoids during processing and storage of pumpkin puree. Food Chem 128:195–202

    PubMed  Article  CAS  Google Scholar 

  35. Quesada S, Azofeifa G, Jatunov S, Jiménez G, Navarro L, Gómez G (2011) Carotenoids composition, antioxidant activity and glycemic index of two varieties of Bactris gasipaes. Emir J Food Agric 23:482–489

    Google Scholar 

  36. Rojas-Garbanzo C, Pérez AM, Bustos-Carmona J, Vaillant F (2011) Identification and quantification of carotenoids by HPLC-DAD during the process of peach palm (Bactris gasipaes H.B.K.) flour. Food Res Int 44:2377–2384

    Article  CAS  Google Scholar 

  37. Schweiggert RM, Steingass CB, Mora E, Esquivel P, Carle R (2011a) Carotenogenesis and physico-chemical characteristics during maturation of red fleshed papaya fruit (Carica papaya L.). Food Res Int 44:1373–1380

    Article  CAS  Google Scholar 

  38. Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R (2011b) Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.). Planta 234:1031–1044

    PubMed  Article  CAS  Google Scholar 

  39. Schweiggert RM, Mezger D, Schimpf F, Steingass CB, Carle R (2012a) Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem 135:2736–2742

    PubMed  Article  CAS  Google Scholar 

  40. Schweiggert RM, Steingass CB, Esquivel P, Carle R (2012b) Chemical and morphological characterization of Costa Rican papaya (Carica papaya L.) hybrids and lines with particular focus on their genuine carotenoid profiles. J Agric Food Chem 60:2577–2585

    PubMed  Article  CAS  Google Scholar 

  41. Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG, Högel J, Quesada S, Esquivel P, Schwartz SJ, Carle R (2013) Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. Br J Nutr 111:490–498

    PubMed  Article  PubMed Central  Google Scholar 

  42. Sitte P, Falk H, Liedvogel B (1980) Chromoplasts. In: Czygan FC (ed) Pigments in plants. Gustav Fischer Verlag, Stuttgart, New York, pp 117–148

    Google Scholar 

  43. Straus W (1953) Chromoplast—development of crystalline forms, structure, state of the pigments. Bot Rev 19:147–186

    Article  CAS  Google Scholar 

  44. Surles RL, Weng N, Simon PW, Tanumihardjo SA (2004) Carotenoid profiles and consumer sensory evaluation of specialty carrots (Daucus carota, L.) of various colors. J Agric Food Chem 52:3417–3421

    PubMed  Article  CAS  Google Scholar 

  45. USDA (2012) USDA national nutrient database for standard reference, Release 25. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed Aug 2013

  46. Vásquez-Caicedo AL, Sruamsiri P, Carle R, Neidhart S (2005) Accumulation of all-trans-β-carotene and its 9-cis and 13-cis stereoisomers during postharvest ripening of nine thai mango cultivars. J Agric Food Chem 53:4827–4835

    PubMed  Article  Google Scholar 

  47. Vásquez-Caicedo AL, Heller A, Neidhart S, Carle R (2006) Chromoplast morphology and β-carotene accumulation during postharvest ripening of mango Cv. ‘Tommy Atkins’. J Agric Food Chem 54:5769–5776

    PubMed  Article  Google Scholar 

  48. Vishnevetsky M, Ovadis M, Vainstein A (1999) Carotenoid sequestration in plants: the role of carotenoid-associated proteins. Trends Plant Sci 4:232–235

    PubMed  Article  Google Scholar 

  49. Zechmeister L (1949) Stereoisomeric provitamins A. Vitam Horm 7:57–81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Erika Rücker (Institute of Botany, Universität Hohenheim) for supporting transmission electron microscopy. J.H. is grateful for a travel grant by the fiat panis Foundation (Ulm, Germany). We also thank the Alexander von Humboldt Foundation (Bonn, Germany) for partially funding this study in the frame of the Research Group Linkage Program.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ralf M. Schweiggert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hempel, J., Amrehn, E., Quesada, S. et al. Lipid-dissolved γ-carotene, β-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits. Planta 240, 1037–1050 (2014). https://doi.org/10.1007/s00425-014-2121-3

Download citation

Keywords

  • Absorption
  • Bioavailability
  • Carotenoids
  • Chromoplast ultrastructure
  • Peach palm
  • Vitamin A