Skip to main content
Log in

Characterization of a plant (rice) translin and its comparative analysis with human translin

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

For the first time, a plant (rice) translin was characterized. The rice translin protein, which was octameric in native state, bound efficiently to single-stranded DNA and RNA.

Translin, a DNA-/RNA-binding protein, is expressed in brain, testis and in certain malignancies. It is involved in chromosomal translocation, mRNA metabolism, transcriptional regulation and telomere protection. Studies from human, mice, drosophila and yeast have revealed that it forms an octameric ring, which is important for its function. In spite of the absence of neuronal functions and cancer processes, translin is present in plant systems, but information on plant translin is lacking. Here we report the characterization of a plant (rice) translin. Translin cDNA from O. sativa was cloned into an expression vector; protein was over-expressed in E. coli and subsequently purified to homogeneity. Circular dichroism and homology-based modeling showed that the rice translin protein was similar to the other translin proteins. Native PAGE and gel-filtration analyses showed rice translin to form an octamer and this octameric assembly was independent of disulphide bonds. Rice translin bound to single-stranded DNA sequences like human translin, but not to the double-stranded DNA. Rice translin bound more efficiently to linear DNA (with staggered ends) than open or closed circular DNA. Rice translin also bound to RNA, like its human counterpart. Rice translin displays all the characteristic properties of the translin group of proteins and does indeed qualify as a bonafide “translin” protein. To our knowledge, this is the first report wherein the translin protein from a plant source has been functionally characterized. Understanding the translin biology from plant systems will give the new insights into its functional role during plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HsTsn:

Homo sapiens translin

OsTsn:

Oryza sativa translin

TB-RBP:

Testis, brain RNA-binding protein

TRAX:

Translin-associated factor-X

References

  • Aoki K, Suzuki K, Sugano T, Tasaka T, Nakahara K, Kuge O, Omori A, Kasai M (1995) A novel gene, Translin, encodes a recombination hotspot binding protein associated with chromosomal translocations. Nat Genet 10:167–174

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Ishida R, Kasai M (1997) Isolation and characterization of a cDNA encoding a translin-like protein, TRAX. FEBS Lett 401:109–112

    Article  CAS  PubMed  Google Scholar 

  • Aoki K, Suzuki K, Ishida R, Kasai M (1999) The DNA binding activity of translin is mediated by a basic region in the ring-shaped structure conserved in evolution. FEBS Lett 443:363–366

    Article  CAS  PubMed  Google Scholar 

  • Chennathukuzhi VM, Kurihara Y, Bray JD, Yang J, Hecht NB (2001) Altering the GTP binding site of the DNA/RNA-binding protein, translin/TB-RBP, decreases RNA binding and may create a dominant negative phenotype. Nucleic Acids Res 29:4433–4440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chennathukuzhi V, Stein JM, Abel T, Donlon S, Yang S, Miller JP, Allman DM, Simmons RA, Hecht NB (2003) Mice deficient for testis-brain RNA-binding protein exhibit a coordinate loss of TRAX, reduced fertility, altered gene expression in the brain, and behavioral changes. Mol Cell Biol 23:6419–6434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiaruttini C, Vicario A, Li Z, Baj G, Braiuca P, Wu Y, Lee FS, Gardossi L, Baraban JM, Tongiorgi E (2009) Dendritic trafficking of BDNF mRNA is mediated by translin and blocked by the G196A (Val66Met) mutation. Proc Natl Acad Sci USA 106:16481–16486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Claussen M, Koch R, Jin ZY, Suter B (2006) Functional characterization of Drosophila Translin and Trax. Genetics 174:1337–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eliahoo E, Ben Yosef R, Pérez-Cano L, Fernández-Recio J, Glaser F, Manor H (2010) Mapping of interaction sites of the Schizosaccharomyces pombe protein Translin with nucleic acids and proteins: a combined molecular genetics and bioinformatics study. Nucleic Acids Res 38:2975–2989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukuda Y, Ishida R, Aoki K, Nakahara K, Takashi T, Mochida K, Suzuki O, Matsuda J, Kasai M (2008) Contribution of Translin to hematopoietic regeneration after sublethal ionizing irradiation. Biol Pharm Bull 31:207–211

    Article  CAS  PubMed  Google Scholar 

  • Gupta GD, Kumar V (2012) Identification of nucleic acid binding sites on translin-associated factor X (TRAX) protein. PLoS One 7:e33035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta GD, Makde RD, Kamdar RP, D’Souza JS, Kulkarni MG, Kumar V, Rao BJ (2005) Co-expressed recombinant human Translin–Trax complex binds DNA. FEBS Lett 579:3141–3146

    Article  CAS  PubMed  Google Scholar 

  • Gupta GD, Makde RD, Rao BJ, Kumar V (2008) Crystal structures of Drosophila mutant translin and characterization of translin variants reveal the structural plasticity of translin proteins. FEBS J 275:4235–4249

    Article  CAS  PubMed  Google Scholar 

  • Gupta GD, Kale A, Kumar V (2012) Molecular evolution of translin superfamily proteins within the genomes of eubacteria, archaea and eukaryotes. J Mol Evol 75:155–167

    Article  CAS  PubMed  Google Scholar 

  • Ishida R, Okado H, Sato H, Shionoiri C, Aoki K, Kasai M (2002) A role for the octameric ring protein, translin, in mitotic cell division. FEBS Lett 525:105–110

    Article  CAS  PubMed  Google Scholar 

  • Jacob E, Pucshansky L, Zeruya E, Baran N, Manor H (2004) The human protein translin specifically binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n: a study of the binding parameters. J Mol Biol 344:939–950

    Article  CAS  PubMed  Google Scholar 

  • Jaendling A, McFarlane RJ (2010) Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. Biochem J 429:225–234

    Article  CAS  PubMed  Google Scholar 

  • Jaendling A, Ramayah S, Pryce DW, McFarlane RJ (2008) Functional characterisation of the Schizosaccharomyces pombe homologue of the leukaemia-associated translocation breakpoint binding protein translin and its binding partner, TRAX. Biochim Biophys Acta 1783:203–213

    Article  CAS  PubMed  Google Scholar 

  • Kaluzhny D, Laufman O, Timofeev E, Borisova O, Manor H, Shchyolkina A (2005) Conformational changes induced in the human protein translin and in the single-stranded oligodeoxynucleotides d(GT)(12) and d(TTAGGG)(5) upon binding of these oligodeoxynucleotides by translin. J Biomol Struct Dyn 23:257–265

    Article  CAS  PubMed  Google Scholar 

  • Kant CR, Rao BJ, Sainis JK (2005) DNA binding and pairing activity of OsDmc1, a recombinase from rice. Plant Mol Biol 57:1–11

    Article  CAS  PubMed  Google Scholar 

  • Kasai M, Matsuzaki T, Katayanagi K, Omori A, Maziarz RT, Strominger JL, Aoki K, Suzuki K (1997) The translin ring specifically recognizes DNA ends at recombination hot spots in the human genome. J Biol Chem 272:11402–11407

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Gupta GD (2012) Low-resolution structure of Drosophila translin. FEBS Open Bio 2:37–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laufman O, Yosef RB, Adir N, Manor H (2005) Cloning and characterization of the Schizosaccharomyces pombe homologs of the human protein Translin and the Translin-associated protein TRAX. Nucleic Acids Res 33:4128–4139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Ye X, Jiang F, Liang C, Chen D, Peng J, Kinch LN, Grishin NV, Liu Q (2009) C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lluis M, Hoe W, Schleit J, Robertus J (2010) Analysis of nucleic acid binding by a recombinant translin–trax complex. Biochem Biophys Res Commun 396:709–713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Louis-Jeune C, Andrade-Navarro MA, Perez-Iratxeta C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Prot Strut Funct Bioinfo 80:374–381

    Article  CAS  Google Scholar 

  • Mellon SH, Bair SR, Depoix C, Vigne JL, Hecht NB, Brake PB (2007) Translin coactivates steroidogenic factor-1-stimulated transcription. Mol Endocrinol 1:89–105

    Article  Google Scholar 

  • Pascal JM, Hart PJ, Hecht NB, Robertus JD (2002) Crystal structure of TB-RBP, a novel RNA-binding and regulating protein. J Mol Biol 319:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Cano L, Eliahoo E, Lasker K, Wolfson HJ, Glaser F, Manor H, Bernadó P, Fernández-Recio J (2013) Conformational transitions in human translin enable nucleic acid binding. Nucleic Acids Res 41:9956–9966

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajanikant C, Kumbhakar M, Pal H, Rao BJ, Sainis JK (2006) DNA strand exchange activity of rice recombinase OsDmc1 monitored by fluorescence resonance energy transfer and the role of ATP hydrolysis. FEBS J 273:1497–1506

    Article  CAS  PubMed  Google Scholar 

  • Rajanikant C, Melzer M, Rao BJ, Sainis JK (2008) Homologous recombination properties of OsRad51, a recombinase from rice. Plant Mol Biol 68:479–491

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sengupta K, Rao BJ (2002) Translin binding to DNA: recruitment through DNA ends and consequent conformational transitions. Biochemistry 41:15226–15315

    Google Scholar 

  • Stein JM, Bergman W, Fang Y, Davison L, Brensinger C, Robinson MB, Hecht NB, Abel T (2006) Behavioral and neurochemical alterations in mice lacking the RNA binding protein translin. J Neurosci 26:2184–2196

    Article  CAS  PubMed  Google Scholar 

  • Sugiura I, Sasaki C, Hasegawa T, Kohno T, Sugio S, Moriyama H, Kasai M, Matsuzaki T (2004) Structure of human translin at 2.2 A resolution. Acta Crystallogr D60:674–679

    CAS  Google Scholar 

  • Suseendranathan K, Sengupta K, Rikhy R, D’Souza JS, Kokkanti M, Kulkarni MG, Kamdar R, Changede R, Sinha R, Subramanian L, Singh K, Rodrigues V, Rao BJ (2007) Expression pattern of Drosophila translin and behavioral analyses of the mutant. Eur J Cell Biol 86:173–186

    Article  CAS  PubMed  Google Scholar 

  • Taira E, Finkenstadt PM, Baraban JM (1998) Identification of translin and trax as components of the GS1 strand specific DNA binding complex enriched in brain. J Neurochem 71:471–477

    Article  CAS  PubMed  Google Scholar 

  • VanLoock MS, Yu X, Kasai M, Egelman EH (2001) Electron microscopic studies of the translin octameric ring. J Struct Biol 135:58–66

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Boja ES, Oubrahim H, Chock PB (2004) Testis brain ribonucleic acid-binding protein/translin possesses both single-stranded and double-stranded ribonuclease activities. Biochemistry 43:13424–13431

    Article  CAS  PubMed  Google Scholar 

  • Wu XQ, Lefrancois S, Morales CR, Hecht NB (1999a) Protein-protein interactions between the testis brain RNA-binding protein and the transitional endoplasmic reticulum ATPase, a cytoskeletal gamma actin and Trax in male germ cells and the brain. Biochemistry 38:11261–11270

    Article  CAS  PubMed  Google Scholar 

  • Wu XQ, Petrusz P, Hecht NB (1999b) Testis-brain RNA-binding protein (translin) is primarily expressed in neurons of the mouse brain. Brain Res 819:174–178

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Chennathukuzhi V, Miki K, O’Brien DA, Hecht NB (2003) Mouse testis brain RNA-binding protein/translin selectively binds to the messenger RNA of the fibrous sheath protein glyceraldehyde 3-phosphate dehydrogenase-S and suppresses its translation in vitro. Biol Reprod 68:853–859

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely acknowledge Rice Genome Resource Center (RGRC), Japan for providing translin cDNA clone. Our thanks are due to Dr. Anubrata Das, for help with the homology-based modeling and Dr. Himanshi Narang Mishra, for the help during cloning of translin cDNA. We acknowledge Mr. Shivam Shukla for his help in gel-filtration experiment. Dr. S. K.Apte, Head, Molecular Biology Division, Bhabha Atomic Research Center, Mumbai, India, is also acknowledged for his constant support throughout the study. We acknowledge Dr. Vinay Kumar, Protein Crystallography Section, Solid State Physics Division, Bhabha Atomic Research Center, Mumbai, India, for helpful suggestions and critical reviewing of the manuscript. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajani Kant Chittela.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chittela, R.K., Gupta, G.D. & Ballal, A. Characterization of a plant (rice) translin and its comparative analysis with human translin. Planta 240, 357–368 (2014). https://doi.org/10.1007/s00425-014-2092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2092-4

Keywords

Navigation