Skip to main content
Log in

Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Review and phylogenic analysis on ZUO1/ZRF orthologs.

Abstract

Heat shock protein 40s (Hsp40s), also known as J-proteins, are conserved in prokaryotes and eukaryotes. The Zuotin/Zuotin-related factor (ZUO1/ZRF) family belongs to a novel Hsp40 clade exclusively found in eukaryotes. Zuotin/Zuotin-related factor proteins are characterized by a large N terminal ZUO1 domain originally identified in the yeast ZUO1 protein. The ZUO1 domain is characterized by a highly conserved J-domain, together with an atypical UBD domain first identified in the human ZRF1 protein. Furthermore, ZUO1/ZRF protein families in animals and plants harbor a pair of C terminal SANT domains, suggesting the divergence of their functions with those in fungi. Zuotin/Zuotin-related factor proteins retain the ancestral function as an Hsp70 co-chaperone implicated in protein folding and renaturation after stress; these proteins also perform diverse neofunctions in the cytoplasm and transcriptional and/or epigenetic regulatory functions in the nucleus. Therefore, these proteins are involved in translational fidelity control, ribosomal biogenesis, asymmetric cell division, cell cycle, apoptosis, differentiation, and tumorigenesis. The results of sequence and domain organization analysis of proteins from diverse organisms provided valuable insights into the evolutionary conservation and diversity of ZUO1/ZRF protein family. Further, phylogenetic analysis provides a platform for future functional investigation on the ZUO1/ZRF protein family, particularly in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CTD:

C-terminal domain

GlsA:

Gonidialess A

MIDA1:

Mouse Id associated 1

NBD:

N-terminal binding domain

NES:

Nuclear export signal

Pdr1:

Pleiotropic drug resistance 1

PRC1:

Polycomb repression complex 1

RAC:

Ribosome-associated complex

SANT:

Swi3, Ada2, NcoR1 and TFIIIB

SBD:

C-terminal binding domain

UBD:

Ubiquitin-binding domain

ZRF:

ZUO1-related factor

ZUO1:

Zuotin

References

  • Aasland R, Stewart AF, Gibson T (1996) The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci 21:87–88

    CAS  PubMed  Google Scholar 

  • Al Qudaihi G, Lehe C, Dickinson A, Eltayeb K, Rasheed W, Chaudhri N, Aljurf M, Dermime S (2010) Identification of a novel peptide derived from the M-phase phosphoprotein 11 (MPP11) leukemic antigen recognized by human CD8+ cytotoxic T lymphocytes. Hematol Oncol Stem Cell Ther 3:24–33

    CAS  PubMed  Google Scholar 

  • Albanese V, Reissmann S, Frydman J (2010) A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis. J Cell Biol 189:69–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barbaric S, Reinke H, Horz W (2003) Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol Cell Biol 23:3468–3476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyer LA, Langer MR, Crowley KA, Tan S, Denu JM, Peterson CL (2002) Essential role for the SANT domain in the functioning of multiple chromatin remodeling enzymes. Mol Cell 10:935–942

    Article  CAS  PubMed  Google Scholar 

  • Boyer LA, Latek RR, Peterson CL (2004) The SANT domain: a unique histone-tail-binding module? Nat Rev Mol Cell Biol 5:158–163

    Article  CAS  PubMed  Google Scholar 

  • Braun EL, Grotewold E (2001) Fungal Zuotin proteins evolved from MIDA1-like factors by lineage-specific loss of MYB domains. Mol Biol Evol 18:1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Q, Pappas V, Hallmann A, Miller SM (2005) Hsp70A and GlsA interact as partner chaperones to regulate asymmetric division in Volvox. Dev Biol 286:537–548

    Article  CAS  PubMed  Google Scholar 

  • Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 6:439–450

    Article  CAS  PubMed  Google Scholar 

  • Conz C, Otto H, Peisker K, Gautschi M, Wolfle T, Mayer MP, Rospert S (2007) Functional characterization of the atypical Hsp70 subunit of yeast ribosome-associated complex. J Biol Chem 282:33977–33984

    Article  CAS  PubMed  Google Scholar 

  • Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181

    Article  CAS  PubMed  Google Scholar 

  • Deuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B (2003) Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47:1317–1328

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Lai R, Jennings JL, Link AJ, Hinnebusch AG (2005) The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis. Mol Cell Biol 25:9859–9873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ducett JK, Peterson FC, Hoover LA, Prunuske AJ, Volkman BF, Craig EA (2013) Unfolding of the C-terminal domain of the J-protein Zuo1 releases autoinhibition and activates Pdr1-dependent transcription. J Mol Biol 425:19–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ, Manning G, Lang BF, Haas B, Nusbaum C, King N (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 14:R15

    Article  PubMed  Google Scholar 

  • Felberbaum R, Wilson NR, Cheng D, Peng J, Hochstrasser M (2012) Desumoylation of the endoplasmic reticulum membrane VAP family protein Scs2 by Ulp1 and SUMO regulation of the inositol synthesis pathway. Mol Cell Biol 32:64–75

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiaux J, Horst J, Scior A, Preissler S, Koplin A, Bukau B, Deuerling E (2009) Structural analysis of the ribosome-associated complex (RAC) reveals an unusual Hsp70/Hsp40 interaction. J Biol Chem 285:3227–3234

    Article  PubMed Central  PubMed  Google Scholar 

  • Gautschi M, Lilie H, Funfschilling U, Mun A, Ross S, Lithgow T, Rucknagel P, Rospert S (2001) RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proc Natl Acad Sci USA 98:3762–3767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gautschi M, Mun A, Ross S, Rospert S (2002) A functional chaperone triad on the yeast ribosome. Proc Natl Acad Sci USA 99:4209–4214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gautschi M, Just S, Mun A, Ross S, Rucknagel P, Dubaquie Y, Ehrenhofer-Murray A, Rospert S (2003) The yeast N(alpha)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol Cell Biol 23:7403–7414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147

    Article  CAS  PubMed  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  CAS  PubMed  Google Scholar 

  • Genevaux P, Wawrzynow A, Zylicz M, Georgopoulos C, Kelley WL (2001) DjlA is a third DnaK co-chaperone of Escherichia coli, and DjlA-mediated induction of colanic acid capsule requires DjlA-DnaK interaction. J Biol Chem 276:7906–7912

    Article  CAS  PubMed  Google Scholar 

  • Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU, Georgopoulos C (2004) In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep 5:195–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA 96:13732–13737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greiner J, Ringhoffer M, Taniguchi M, Hauser T, Schmitt A, Dohner H, Schmitt M (2003) Characterization of several leukemia-associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia. Int J Cancer 106:224–231

    Article  CAS  PubMed  Google Scholar 

  • Greiner J, Ringhoffer M, Taniguchi M, Li L, Schmitt A, Shiku H, Dohner H, Schmitt M (2004) mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer 108:704–711

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Brzeski J, Eberharter A, Clapier CR, Corona DF, Becker PB, Muller CW (2003) Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Mol Cell 12:449–460

    Article  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–6101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guerrero C, Milenkovic T, Przulj N, Kaiser P, Huang L (2008) Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci USA 105:13333–13338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han W, Christen P (2004) cis-Effect of DnaJ on DnaK in ternary complexes with chimeric DnaK/DnaJ-binding peptides. FEBS Lett 563:146–150

    Article  CAS  PubMed  Google Scholar 

  • Hatzold J, Conradt B (2008) Control of apoptosis by asymmetric cell division. PLoS Biol 6:e84

    Article  PubMed Central  PubMed  Google Scholar 

  • Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 14:1697–1709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang P, Gautschi M, Walter W, Rospert S, Craig EA (2005) The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat Struct Mol Biol 12:497–504

    Article  CAS  PubMed  Google Scholar 

  • Hundley H, Eisenman H, Walter W, Evans T, Hotokezaka Y, Wiedmann M, Craig E (2002) The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc Natl Acad Sci USA 99:4203–4208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue T, Shoji W, Obinata M (1999) MIDA1, an Id-associating protein, has two distinct DNA binding activities that are converted by the association with Id1: a novel function of Id protein. Biochem Biophys Res Commun 266:147–151

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Shoji W, Obinata M (2000) MIDA1 is a sequence specific DNA binding protein with novel DNA binding properties. Genes Cells 5:699–709

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal H, Conz C, Otto H, Wolfle T, Fitzke E, Mayer MP, Rospert S (2011) The chaperone network connected to human ribosome-associated complex. Mol Cell Biol 31:1160–1173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jao DL, Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97:583–598

    Article  CAS  PubMed  Google Scholar 

  • Kaake RM, Milenkovic T, Przulj N, Kaiser P, Huang L (2010) Characterization of cell cycle specific protein interaction networks of the yeast 26S proteasome complex by the QTAX strategy. J Proteome Res 9:2016–2029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirk DL (2001) Germ-soma differentiation in Volvox. Dev Biol 238:213–223

    Article  CAS  PubMed  Google Scholar 

  • Kirk MM, Stark K, Miller SM, Muller W, Taillon BE, Gruber H, Schmitt R, Kirk DL (1999) regA, a Volvox gene that plays a central role in germ-soma differentiation, encodes a novel regulatory protein. Development 126:639–647

    CAS  PubMed  Google Scholar 

  • Kluck CJ, Patzelt H, Genevaux P, Brehmer D, Rist W, Schneider-Mergener J, Bukau B, Mayer MP (2002) Structure-function analysis of HscC, the Escherichia coli member of a novel subfamily of specialized Hsp70 chaperones. J Biol Chem 277:41060–41069

    Article  CAS  PubMed  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  CAS  PubMed  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Le HT, Gautier V, Kthiri F, Malki A, Messaoudi N, Mihoub M, Landoulsi A, An YJ, Cha SS, Richarme G (2012) YajL, prokaryotic homolog of parkinsonism-associated protein DJ-1, functions as a covalent chaperone for thiol proteome. J Biol Chem 287:5861–5870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, Vidalain PO, Han JD, Chesneau A, Hao T, Goldberg DS, Li N, Martinez M, Rual JF, Lamesch P, Xu L, Tewari M, Wong SL, Zhang LV, Berriz GF, Jacotot L, Vaglio P, Reboul J, Hirozane-Kishikawa T, Li Q, Gabel HW, Elewa A, Baumgartner B, Rose DJ, Yu H, Bosak S, Sequerra R, Fraser A, Mango SE, Saxton WM, Strome S, Van Den Heuvel S, Piano F, Vandenhaute J, Sardet C, Gerstein M, Doucette-Stamm L, Gunsalus KC, Harper JW, Cusick ME, Roth FP, Hill DE, Vidal M (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liberek K, Georgopoulos C, Zylicz M (1988) Role of the Escherichia coli DnaK and DnaJ heat shock proteins in the initiation of bacteriophage lambda DNA replication. Proc Natl Acad Sci USA 85:6632–6636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luce MC, Tschanz KD, Gotto DA, Bunn CL (1985) The accuracy of protein synthesis in reticulocyte and HeLa cell lysates. Biochim Biophys Acta 825:280–288

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto-Taniura N, Pirollet F, Monroe R, Gerace L, Westendorf JM (1996) Identification of novel M phase phosphoproteins by expression cloning. Mol Biol Cell 7:1455–1469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer MP, Laufen T, Paal K, McCarty JS, Bukau B (1999) Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy. J Mol Biol 289:1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Miller SM, Kirk DL (1999) glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein. Development 126:649–658

    CAS  PubMed  Google Scholar 

  • Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B (1999) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T (2003) Identification of higher plant GlsA, a putative morphogenesis factor of gametic cells. Biochem Biophys Res Commun 306:564–569

    Article  CAS  PubMed  Google Scholar 

  • Newman JR, Wolf E, Kim PS (2000) A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc Natl Acad Sci USA 97:13203–13208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ni L, Snyder M (2001) A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12:2147–2170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y (1994) Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 79:639–648

    Article  CAS  PubMed  Google Scholar 

  • Otto H, Conz C, Maier P, Wolfle T, Suzuki CK, Jeno P, Rucknagel P, Stahl J, Rospert S (2005) The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc Natl Acad Sci USA 102:10064–10069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pappas V, Miller SM (2009) Functional analysis of the Volvox carteri asymmetric division protein GlsA. Mech Dev 126:842–851

    Article  CAS  PubMed  Google Scholar 

  • Peisker K, Braun D, Wolfle T, Hentschel J, Funfschilling U, Fischer G, Sickmann A, Rospert S (2008) Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol Biol Cell 19:5279–5288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfund C, Lopez-Hoyo N, Ziegelhoffer T, Schilke BA, Lopez-Buesa P, Walter WA, Wiedmann M, Craig EA (1998) The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J 17:3981–3989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piazzi M, Blalock WL, Bavelloni A, Faenza I, D’Angelo A, Maraldi NM, Cocco L (2013) Phosphoinositide-specific phospholipase C beta 1b (PI-PLCbeta1b) interactome: affinity purification-mass spectrometry analysis of PI-PLCbeta1b with nuclear protein. Mol Cell Proteomics 12:2220–2235

    Article  CAS  PubMed  Google Scholar 

  • Prunuske AJ, Waltner JK, Kuhn P, Gu B, Craig EA (2012) Role for the molecular chaperones Zuo1 and Ssz1 in quorum sensing via activation of the transcription factor Pdr1. Proc Natl Acad Sci USA 109:472–477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qian YQ, Patel D, Hartl FU, McColl DJ (1996) Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. J Mol Biol 260:224–235

    Article  CAS  PubMed  Google Scholar 

  • Qian T, Lee JY, Park JH, Kim HJ, Kong G (2010) Id1 enhances RING1b E3 ubiquitin ligase activity through the Mel-18/Bmi-1 polycomb group complex. Oncogene 29:5818–5827

    Article  CAS  PubMed  Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    Article  CAS  PubMed  Google Scholar 

  • Rajan VB, D’Silva P (2009) Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct Integr Genomics 9:433–446

    Article  CAS  PubMed  Google Scholar 

  • Rakwalska M, Rospert S (2004) The ribosome-bound chaperones RAC and Ssb1/2p are required for accurate translation in Saccharomyces cerevisiae. Mol Cell Biol 24:9186–9197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Resto VA, Caballero OL, Buta MR, Westra WH, Wu L, Westendorf JM, Jen J, Hieter P, Sidransky D (2000) A putative oncogenic role for MPP11 in head and neck squamous cell cancer. Cancer Res 60:5529–5535

    CAS  PubMed  Google Scholar 

  • Ribeiro JD, Morey L, Mas A, Gutierrez A, Luis NM, Mejetta S, Richly H, Benitah SA, Keyes WM, Di Croce L (2012) ZRF1 controls oncogene-induced senescence through the INK4-ARF locus. Oncogene 32:2161–2168

    Article  PubMed  Google Scholar 

  • Richly H, Di Croce L (2011) The flip side of the coin: role of ZRF1 and histone H2A ubiquitination in transcriptional activation. Cell Cycle 10:745–750

    Article  CAS  PubMed  Google Scholar 

  • Richly H, Rocha-Viegas L, Ribeiro JD, Demajo S, Gundem G, Lopez-Bigas N, Nakagawa T, Rospert S, Ito T, Di Croce L (2010) Transcriptional activation of polycomb-repressed genes by ZRF1. Nature 468:1124–1128

    Article  CAS  PubMed  Google Scholar 

  • Sammons MA, Samir P, Link AJ (2011) Saccharomyces cerevisiae Gis2 interacts with the translation machinery and is orthogonal to myotonic dystrophy type 2 protein ZNF9. Biochem Biophys Res Commun 406:13–19

    Article  CAS  PubMed  Google Scholar 

  • Sarkar NK, Thapar U, Kundnani P, Panwar P, Grover A (2013) Functional relevance of J-protein family of rice (Oryza sativa). Cell Stress Chaperones 18:321–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffitzel E, Rudiger S, Bukau B, Deuerling E (2001) Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins. Biol Chem 382:1235–1243

    Article  CAS  PubMed  Google Scholar 

  • Schroder H, Langer T, Hartl FU, Bukau B (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J 12:4137–4144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sell SM, Eisen C, Ang D, Zylicz M, Georgopoulos C (1990) Isolation and characterization of dnaJ null mutants of Escherichia coli. J Bacteriol 172:4827–4835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T (2008) Multigene phylogeny of choanozoa and the origin of animals. PLoS One 3:e2098

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma SK, De los Rios P, Christen P, Lustig A, Goloubinoff P (2010) The kinetic parameters and energy cost of the Hsp70 chaperone as a polypeptide unfoldase. Nat Chem Biol 6:914–920

    Article  CAS  PubMed  Google Scholar 

  • Shoji W, Inoue T, Yamamoto T, Obinata M (1995) MIDA1, a protein associated with Id, regulates cell growth. J Biol Chem 270:24818–24825

    Article  CAS  PubMed  Google Scholar 

  • Shulga N, James P, Craig EA, Goldfarb DS (1999) A nuclear export signal prevents Saccharomyces cerevisiae Hsp70 Ssb1p from stimulating nuclear localization signal-directed nuclear transport. J Biol Chem 274:16501–16507

    Article  CAS  PubMed  Google Scholar 

  • Suh WC, Burkholder WF, Lu CZ, Zhao X, Gottesman ME, Gross CA (1998) Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci USA 95:15223–15228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tahirov TH, Sasaki M, Inoue-Bungo T, Fujikawa A, Sato K, Kumasaka T, Yamamoto M, Ogata K (2001) Crystals of ternary protein-DNA complexes composed of DNA-binding domains of c-Myb or v-Myb, C/EBPalpha or C/EBPbeta and tom-1A promoter fragment. Acta Crystallogr D Biol Crystallogr 57:1655–1658

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai J, Douglas MG (1996) A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J Biol Chem 271:9347–9354

    Article  CAS  PubMed  Google Scholar 

  • Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ (2003) The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42:4937–4944

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Schilke B, Pfund C, Walter W, Kim S, Craig EA (1998) Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J 17:4809–4817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yochem J, Uchida H, Sunshine M, Saito H, Georgopoulos CP, Feiss M (1978) Genetic analysis of two genes, dnaJ and dnaK, necessary for Escherichia coli and bacteriophage lambda DNA replication. Mol Gen Genet 164:9–14

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Li Y, Ishizuka T, Guenther MG, Lazar MA (2003) A SANT motif in the SMRT corepressor interprets the histone code and promotes histone deacetylation. EMBO J 22:3403–3410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11:3787–3796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Rudd KE (2013) EcoGene 3.0. Nucl Acids Res 41(D1):D613–D624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ziv I, Matiuhin Y, Kirkpatrick DS, Erpapazoglou Z, Leon S, Pantazopoulou M, Kim W, Gygi SP, Haguenauer-Tsapis R, Reis N, Glickman MH, Kleifeld O (2011) A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol Cell Proteomics 10(M111):009753

    PubMed  Google Scholar 

  • Zolkiewski M (1999) ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem 274:28083–28086

    Article  CAS  PubMed  Google Scholar 

  • Zylicz M, Georgopoulos C (1984) Purification and properties of the Escherichia coli dnaK replication protein. J Biol Chem 259:8820–8825

    CAS  PubMed  Google Scholar 

  • Zylicz M, LeBowitz JH, McMacken R, Georgopoulos C (1983) The dnaK protein of Escherichia coli possesses an ATPase and autophosphorylating activity and is essential in an in vitro DNA replication system. Proc Natl Acad Sci USA 80:6431–6435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Foundation of Hunan Provincial Education Department of China (13B045) and National Basic Research Program of China (973 Program, 2012CB910500).

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-Hong Chen or Ying Ruan.

Additional information

D.-H. Chen and Y. Huang are contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, DH., Huang, Y., Liu, C. et al. Functional conservation and divergence of J-domain-containing ZUO1/ZRF orthologs throughout evolution. Planta 239, 1159–1173 (2014). https://doi.org/10.1007/s00425-014-2058-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2058-6

Keywords

Navigation