Skip to main content
Log in

Arabidopsis nudix hydrolase 7 plays a role in seed germination

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Arabidopsis nudix hydrolase 7 (Atnudt7) mutants exhibit reduced seed germination phenotype following after-ripening. The role of AtNUDT7 in seeds and during early stages of imbibition was examined. Seeds of Atnudt7-1 and Col-0 following 3 days of imbibition were used to profile changes in NADH- and ADP-ribose pyrophosphohydrolase enzyme activities, expression of nudix family genes closely related to AtNudt7, and AtNUDT7 protein levels. Changes in pyridine nucleotides, phytohormones, reactive oxygen species and poly(ADP-ribose) levels in after-ripened seeds and 1 day after imbibition were also analyzed. Changes in AtNUDT7 gene expression, protein levels and enzyme activities in WT seeds and during early stages of imbibition were correlated. Atnudt7-1 seeds lacked NADH pyrophosphohydrolase activity that led to very high catabolic redox charge. Abscisic acid (ABA) levels were higher in Atnudt7-1 mutant while salicylic acid, gibberellic acid, and reactive oxygen species (ROS) levels were higher in WT seeds. In Atnudt7-1, there was excess ROS accumulation 1 day after imbibition. PAR levels were significantly higher in Atnudt7-1 mutant when compared to WT during imbibition. Based on these observations, we conclude NADH pyrophosphohydrolase activity conferred by AtNUDT7 is important for NAD:NADH homeostasis in seeds. Perturbations to this key redox couple alter ABA and ROS levels in the seeds that in turn lowers germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aldasoro J, Nicolas G (1979) Change in the concentrations of glycolytic intermediates and adenosine phosphates during germination of seeds of Cicer arietinum L. Int J Biochem 10:947–950

    Article  CAS  Google Scholar 

  • Ames GR, King TA (1966) The assay and pH profile of lipoxidase. J Sci Food Agric 17:301–303

    Article  PubMed  CAS  Google Scholar 

  • Bartsch M, Gobbato E, Bednarek P, Debey S, Schultze JL, Bautor J, Parker JE (2006) Salicylic acid-independent ENHANCED DISEASE SUSCEPTIBILITY1 signaling in Arabidopsis immunity and cell death is regulated by the monooxygenase FMO1 and the nudix hydrolase NUDT7. Plant Cell 18:1038–1051

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bazin J, Langlade N, Vincourt P, Arribat S, Balzergue S, El-Maarouf-Bouteau H, Bailly C (2011) Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening. Plant Cell 23:2196–2208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci 103:17042–17047

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Botha FC, Potgeiter GT, Botha A-M (1992) Respiratory metabolism and gene expression during seed germination. J Plant Growth Regul 11:211–224

    Article  CAS  Google Scholar 

  • Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J 53:214–224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen Q, Zhang B, Hicks LM, Wang S, Jez JM (2009) A liquid chromatography-tandem mass spectrometry-based assay for indole-3-acetic acid-amido synthetase. Anal Biochem 390:149–154

    Article  PubMed  CAS  Google Scholar 

  • Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Colville A, Alhattab R, Hu M, Labbe H, Xing T, Miki B (2011) Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Rep 10:1969–1979

    Article  CAS  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Debeaujon I, Leon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–414

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dunn CA, O’Handley SF, Frick DN, Bessman MJ (1999) Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J Biol Chem 274:32318–32324

    Article  PubMed  CAS  Google Scholar 

  • Ehrenshaft M, Brambl R (1990) Respiration and mitochondrial biogenesis in germinating embryos of maize. Plant Physiol 93:295–304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • El-Maarouf-Boteau H, Bailly C (2008) Oxidative signaling in seed germination and dormancy. Plant Signal Behav 3:175–182

    Article  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Gallais S, Crescenzo M-APD, Laval-Martin DL (1998) Pyridine nucleotides and redox charges during germination of non-dormant and dormant caryopses of Avena sativa L. J Plant Physiol 153:664–669

    Article  CAS  Google Scholar 

  • Ge X, Xia Y (2008) The role of AtNUDT7, a nudix hydrolase, in the plant defense response. Plant Signal Behav 3:119–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Ge X, Li GJ, Wang SB, Zhu H, Zhu T, Wang X, Xia Y (2007) AtNUDT7, a negative regulator of basal immunity in Arabidopsis, modulates two distinct defense response pathways and is involved in maintaining redox homeostasis. Plant Physiol 145:204–215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in arabidopsis. Plant Cell 12:1117–1126

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayashi M, Takahashi H, Tamura K, Huang JR, Yu LH, Kawai-Yamada M, Tezuka T, Uchimiya H (2005) Enhanced dihydroflavonol-4-reductase activity and NAD homeostasis leading to cell death tolerance in transgenic rice. Proc Natl Acad Sci 102:7020–7025

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Henderson JT, Li HC, Rider SD, Mordhorst AP, Romero-Severson J, Cheng JC, Robey J, Sung ZR, de Vries SC, Ogas J (2004) PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses. Plant Physiol 134:995–1005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Holdsworth MJ, Bentsink L, Soppe WJ (2008) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54

    Article  PubMed  CAS  Google Scholar 

  • Hunt L, Gray JE (2009) The relationship between pyridine nucleotides and seed dormancy. New Phytol 181:62–70

    Article  PubMed  CAS  Google Scholar 

  • Hunt L, Lerner F, Ziegler M (2004) NAD—new roles in signalling and gene regulation in plants. New Phytol 163:31–44

    Article  CAS  Google Scholar 

  • Hunt L, Holdsworth MJ, Gray JE (2007) Nicotinamidase activity is important for germination. Plant J 51:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Ogawa T, Hirosue E, Nakayama Y, Harada K, Fukusaki E, Yoshimura K, Shigeoka S (2009) Modulation of the poly(ADP-ribosyl)ation reaction via the Arabidopsis ADP-ribose/NADH pyrophosphohydrolase, AtNUDX7, is involved in the response to oxidative stress. Plant Physiol 151:741–754

    Article  PubMed Central  PubMed  Google Scholar 

  • Jambunathan N, Mahalingam R (2006) Analysis of Arabidopsis growth factor gene 1 (GFG1) encoding a nudix hydrolase during oxidative signaling. Planta 224:1–11

    Article  PubMed  CAS  Google Scholar 

  • Jambunathan N, Penaganti A, Tang Y, Mahalingam R (2010) Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC Plant Biol 10:173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Joo JH, Wang SY, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kanno Y, Jikumaru Y, Hanada A, Nambara E, Abrams SR, Kamiya Y, Seo M (2010) Comprehensive hormone profiling in developing Arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol 51:1988–2001

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36

    Article  PubMed  CAS  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Koornneef M, Soppe WJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mahalingam R, Jambunathan N, Penaganti A (2007) Pyridine nucleotide homeostasis in plant development and stress. Int J Plant Dev Biol 1:194–201

    Google Scholar 

  • Muller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G (2009) The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytol 184:885–897

    Article  PubMed  CAS  Google Scholar 

  • Murata Y, Pei ZM, Mori IC, Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513–2523

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe WJ (2012) The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. Plant Cell 24:2826–2838

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Naredo MEB, Juliano AB, Lu BR, De Guzman F, Jackson MT (1998) Responses to seed dormancy-breaking treatments in rice species (Oryza L.). Seed Sci Tech 26:675–689

    Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ogawa T, Ueda Y, Yoshimura K, Shigeoka S (2005) Comprehensive analysis of cytosolic nudix hydrolases in Arabidopsis thaliana. J Biol Chem 280:25277–25283

    Article  PubMed  CAS  Google Scholar 

  • Olejnik K, Kraszewska E (2005) Cloning and characterization of an Arabidopsis thaliana nudix hydrolase homologous to the mammalian GFG protein. Biochim Biophys Acta 1752:133–141

    Article  PubMed  CAS  Google Scholar 

  • Oracz K, El-Maarouf Bouteau H, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:452–465

    Article  PubMed  CAS  Google Scholar 

  • Overmyer K, Brosche M, Kangasjarvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  PubMed  CAS  Google Scholar 

  • Penfield S, King J (2009) Towards a systems biology approach to understanding seed dormancy and germination. Proc Biol Sci 276:3561–3569

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Powell AD, Dulson J, Bewley JD (1984) Changes in germination and respiratory potential of embryos of dormant grand rapids lettuce seeds during long-term imbibed storage, ad related changes in the endosperm. Planta 162:40–45

    Article  PubMed  CAS  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ribeiro JM, Carloto A, Costas MJ, Cameselle JC (2001) Human placenta hydrolases active on free ADP-ribose: an ADP-sugar pyrophosphatase and a specific ADP-ribose pyrophosphatase. Biochim Biophys Acta 1526:86–94

    Article  PubMed  CAS  Google Scholar 

  • Russell L, Larner V, Kurup S, Bougourd S, Holdsworth M (2000) The Arabidopsis COMATOSE locus regulates germination potential. Development 127:3759–3767

    PubMed  CAS  Google Scholar 

  • Salon C, Raymond P, Pradet A (1988) Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos. J Biol Chem 263:12278–12287

    PubMed  CAS  Google Scholar 

  • Sarath G, Hou G, Baird LM, Mitchell RB (2007) Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses. Planta 226:697–708

    Article  PubMed  CAS  Google Scholar 

  • Steber CM, Cooney SE, McCourt P (1998) Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics 149:509–521

    PubMed Central  PubMed  CAS  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91(phox)). Plant J 14:365–370

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Heimovaara-Dijkstra S, Van Duijn B (1995) Modulation of germination of embryos isolated from dormant and nondormant barley grains by manipulation of endogenous abscisic levels. Planta 195:586–592

    Article  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2:e718

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang B, Yan D, Dong W, Yang W, Li Q, Zeng L, Wang J, Wang L, Hicks LM, He Z (2011) Two Arabidopsis cytochrome P450 monooxygenases, CYP714A1 and CYP714A2, function redundantly in plant development through gibberellin deactivation. Plant J 67:342–353

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported partially by National Science Foundation under Grant No. EPS-081431. We thank Dr. Jane Parker (Max Planck Institute for Plant Breeding Research) for providing us the Atnudt7-2 mutant seeds. We thank Dr. Leslie Hicks, Donald Danforth Plant Sciences Center, Saint Louis, MO for assistance with the phytohormone analysis. We thank Dr. Yixing Wang for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramamurthy Mahalingam.

Electronic supplementary material

ESM_1 Expression of AtNUDT7 protein in after-ripened seeds of Atnudt7-1 complementation lines. A. Ten micrograms of protein extract from seeds of Col-0, and the two complementation lines (Atnudt7-1t23, Atnudt7-1t37) were used to prepare the blot, followed by hybridization with AtNUDT7 polyclonal antibodies. B. Coomassie blue staining of membrane showing protein loading.

ESM_2 Coomassie blue stained membranes showing protein loading. The same membranes were used for western hybridizations with AtNUDT7 polyclonal antibodies shown in Fig. 4.

ESM_3 eFP browser analysis of Atnudt7 gene expression in various tissues and developmental stages.

ESM_4 Primer sequences used for RT-PCR analysis.

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 226 kb)

Supplementary material 2 (PDF 511 kb)

Supplementary material 3 (PDF 158 kb)

Supplementary material 4 (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, X., Li, YF. & Mahalingam, R. Arabidopsis nudix hydrolase 7 plays a role in seed germination. Planta 239, 1015–1025 (2014). https://doi.org/10.1007/s00425-014-2035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2035-0

Keywords

Navigation