Skip to main content
Log in

Molecular and biochemical identification of inositol 1,3,4,5,6-pentakisphosphate 2-kinase encoding mRNA variants in castor bean (Ricinus communis L.) seeds

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

During seed development, phytic acid (PA) associated with mineral cations is stored as phytin and mobilized following germination in support of seedling growth. Two parallel biosynthetic pathways for PA have been proposed; yet the pathway is still poorly understood in terms of its regulation and the enzymes involved. Here, the castor bean (Ricinus communis L.) gene for inositol 1,3,4,5,6-pentakisphosphate 2-kinase (RcIPK1) has been identified. This encodes the enzyme implicated in catalyzing the final reaction in PA biosynthesis, and its expression is enhanced in isolated germinated embryos by application of phosphate and myo-inositol (Ins). Even though only one copy of the RcIPK1 gene is present in the genome, numerous RNA variants are present, most likely due to alternative splicing. These are translated into six closely related protein isoforms according to in silico analysis. Functional analyses using yeast ipk1Δ revealed that only three of the mRNA variants can rescue a temperature-sensitive growth phenotype of this strain. High-performance liquid chromatography (HPLC) analysis of the synthesized inositol phosphates demonstrated that the ability to complement the missing yeast IPK1 enzyme is associated with the production of enzyme activity. The three active isoforms possess unique conserved motifs important for IPK1 catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PAIP 6 :

Phytic acid myo-inositol 1,2,3,4,5,6-hexakisphosphate

RcIPK1 :

Ricinus communis inositol 1,3,4,5,6-pentakisphosphate 2-kinase

Ins:

Myo-inositol

Lpa:

Low phytic acid

PtdIns:

Phosphatidylinositol

HAI:

Hours after imbibition

HPLC:

High-performance liquid chromatography

References

  • Azevedo C, Saiardi A (2006) Extraction and analysis of soluble inositol polyphosphates from yeast. Nat Protoc 1:2416–2422

    Article  PubMed  CAS  Google Scholar 

  • Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:446–448

    Google Scholar 

  • Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signaling. Nature 341:388–389

    Article  Google Scholar 

  • Biswas BB, Biswas S, Chakrabarti S, De BP (1978a) A novel metabolic cycle involving myo-inositol phosphates during formation and germination of seeds. In: Wells WW, Eisenberg JR (eds) Cyclitols and Phosphoinositides. Academic Press, New York, pp 57–68

    Chapter  Google Scholar 

  • Biswas S, Maity IB, Chakrabarti S, Biswas BB (1978b) Purification and characterization of myo-inositol hexaphosphate-adenosine diphosphate phosphotransferase from Phaseolus aureus. Arch Biochem Biophys 185:557–566

    Article  PubMed  CAS  Google Scholar 

  • Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Brearley CA, Hanke DE (1996) Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexaphosphate in the duckweed Spirodela polyrhiza. Biochem J 314:227–233

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brearley CA, Hanke DE (2000) Metabolic relations of inositol 3,4,5,6-tetrakisphosphate revealed by cell permeabilization: identification of inositol 3,4,5,6-tetrakisphosphate 1-kinase and inositol 3,4,5,6 tetrakisphosphate phosphatase activities in mesophyll cells. Plant Physiol 122:1209–1216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown MJ, Greenwood JS (1990) Involvement of the Golgi apparatus in crystalloid protein deposition in Ricinus communis cv Hale seeds. Can J Bot 68:2353–2360

    Article  CAS  Google Scholar 

  • Chang S, Miller AL, Feng Y, Wente SR, Majerus PW (2002) The human homolog of the rat inositol phosphate multikinase is an inositol 1,3,4,6-tetrakisphosphate 5-kinase. J Biol Chem 277:43836–43843

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1980) Inositol hexakisphosphates. In: Cosgrove DJ (ed) Inositol Phosphates. Their chemistry, biochemistry and physiology. Elsevier Scientific, The Netherlands, pp 26–43

  • Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry 62:691–706

    Article  PubMed  CAS  Google Scholar 

  • Fiske CM, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • González B, Baños-Sanz JI, Villate M, Brearley CA, Sanz-Aparicioa J (2010) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition. Proc Nat Acad Sci USA 107:9608–9613

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood JS, Bewley JD (1984) Subcellular distribution of phytin in the endosperm of developing castor bean: a possibility for its synthesis in the cytoplasm prior to deposition within protein bodies. Planta 160:113–120

    Article  PubMed  CAS  Google Scholar 

  • Hurrell RF (2003) Influence of vegetable protein sources on trace element and mineral bioavailability. J Nutr 133:2973S–2977S

    PubMed  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nature Rev Mol Cell Biol 2:327–338

    Article  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ives EB, Nichols J, Wente SR, York JD (2000) Biochemical and functional characterization of inositol 1,3,4,5,6- pentakisphosphate 2-kinases. J Biol Chem 275:36575–36583

    Article  PubMed  CAS  Google Scholar 

  • Jongbloed AW, Lenis NP (1998) Environmental concerns about animal manure. J Anim Sci 76:2641–2648

    PubMed  CAS  Google Scholar 

  • Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newsl 15:150–152

    Google Scholar 

  • Kermode AR, Bewley JD (1989) Developing seeds of Ricinus communis L., when detached and maintained in an atmosphere of high relative humidity, switch to a germinative mode without the requirement for complete desiccation. Plant Physiol 90:702–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lott JNA (1984) Accumulation of seed reserves of phosphorus and other minerals. In: Murray DR (ed) Seed Physiology. Academic Press, New York, pp 139–166

    Google Scholar 

  • Mendoza C (2002) Effect of genetically modified low phytic acid plants on mineral Absorption. Int J Food Sci Technol 37:759–767

    Article  CAS  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR, York JD (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287:2026–2029

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Tanaka K, Kasai Z (1979) Accumulation of phosphorus, magnesium, and potassium in developing rice grains: followed by electron microprobe X-ray analysis focusing on the aleurone layer. Plant Cell Physiol 20:19–27

    CAS  Google Scholar 

  • Ongusaha PP, Hughes PJ, Davey J, Michell RH (1998) Inositol hexakisphosphate in Schizosaccharomyces pombe: synthesis from Ins(1,4,5)P3 and osmotic regulation. Biochem J 335:671–679

    PubMed  PubMed Central  CAS  Google Scholar 

  • Onnebo SMN, Saiardi A (2009) Inositol pyrophosphates modulate hydrogen peroxide signalling. Biochem J 423:109–118

    Article  PubMed  CAS  Google Scholar 

  • Organ MG, Greenwood JS, Bewley JD (1988) Phytin is synthesized in the cotyledons of germinated castor-bean seeds in response to exogenously supplied phosphate. Planta 174:513–517

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Capp R, Staehelin LA (2002) Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–1327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillippy BQ, Ullah AHJ, Ehrlich KC (1994) Purification and some properties of inositol 1,3,4,5,6-pentakisphosphate 2-kinase from immature soybean seeds. J Biol Chem 269:28393–28399

    PubMed  CAS  Google Scholar 

  • Raboy V (1997) Accumulation and storage of phosphate and minerals. In: Larkins BA, Vasil IK (eds) Cellular and molecular biology of plant seed development. Kluwer Academic Publishers, Dordrecht, pp 441–477

    Chapter  Google Scholar 

  • Raboy V (2001) Seeds for a better future: “low phytate” grains help to overcome malnutrition and reduce pollution. Trends Plant Sci 6:458–462

    Article  PubMed  CAS  Google Scholar 

  • Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Raboy V, Bowen D (2006) Genetics of inositol polyphosphates. In: Majumder AL, Biswas BB (eds) Biology of Inositols and phosphoinositides. Springer, The Netherlands, pp 71–102

    Chapter  Google Scholar 

  • Raboy V, Young KA, Dorsch JA, Cook A (2001) Genetics and breeding of seed phosphorus and phytic acid. J Plant Physiol 158:489–497

    Article  CAS  Google Scholar 

  • Reddy ASN (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  • Saiardi A, Caffrey JJ, Snyder SH, Shears SB (2000) The inositol hexakisphosphate kinase family: catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem 275:24686–24692

    Article  PubMed  CAS  Google Scholar 

  • Saiardi A, Sciambi C, McCaffery JM, Wendland B, Snyder SH (2002) Inositol polyphosphates regulate endocytic trafficking. Proc Nat Acad Sci USA 99:14206–14211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York

  • Sharpley AN, Chapra SC, Wedepohl R, Sims JT, Daniel TC, Reddy KR (1994) Managing agricultural phosphorus for protection of surface waters: issues and options. J Environ Qual 23:437–451

    Article  CAS  Google Scholar 

  • Shears SB (2004) How versatile are inositol phosphate kinases? Biochem J 377:265–280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stephens LR, Irvine RF (1990) Stepwise phosphorylation of myo-inositol leading to myo-inositol hexakisphosphate in Dictyostelium. Nature 346:580–583

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Phillippy BQ (2010) Inositol Polyphosphates and Kinases. In: Munnik T (ed) Lipid signaling in plants, plant cell monographs 16. Springer, Berlin, pp 161–174

    Chapter  Google Scholar 

  • Stevenson-Paulik J, Odom AR, York JD (2002) Molecular and biochemical characterization of two plant inositol polyphosphate 6-/3-/5-kinases. J Biol Chem 277:42711–42718

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik J, Bastidas RJ, Chiou S, Frye RA, York JD (2005) Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proc Nat Acad Sci USA 102:12612–12617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strother S (1980) Homeostasis in germinating seeds. Ann Bot 45:217–218

    CAS  Google Scholar 

  • Sun Y, Thompson M, Lin G, Butler H, Gao Z, Thornburgh S, Yau K, Smith DA, Shukla VK (2007) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization. Plant Physiol 144:1278–1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suzuki M, Tanaka K, Kuwano M, Yoshida KT (2007) Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway. Gene 405:55–64

    Article  PubMed  CAS  Google Scholar 

  • Sweetman D, Johnson S, Caddick SEK, Hanke DE, Brearley CA (2006) Characterization of an Arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (AtIPK1). Biochem J 394:95–103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verbsky JW, Wilson MP, Kisseleva MV, Majerus PW, Wente SR (2002) The synthesis of inositol hexakisphosphate. J Biol Chem 277:31857–31862

    Article  PubMed  CAS  Google Scholar 

  • Verbsky JW, Chang S, Wilson MP, Mochizuki Y, Majerus PW (2005) The pathway for the production of inositol hexakisphosphate in human cells. J Biol Chem 280:1911–1920

    Article  PubMed  CAS  Google Scholar 

  • Wang BB, Brendel V (2006) Genome-wide comparative analysis of alternative splicing in plants. Proc Nat Acad Sci USA 103:7175–7180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weaver CM, Kannan S (2002) Phytate and mineral bioavailability. In: Sathe SK (ed) Reddy NR. CRC Press, Food phytates Florida, pp 211–223

    Google Scholar 

  • York JD, Odom AR, Murphy R, Ives EB, Wente SR (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285:96–100

    Article  PubMed  CAS  Google Scholar 

  • Yoshida KT, Wada T, Koyama H, Mizobuchi-Fukuoka R, Naito S (1999) Temporal and spatial patterns of accumulation of the transcript of myo-inositol-1-phosphate synthase and phytin-containing particles during seed development in rice. Plant Physiol 119:65–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan F-J, Zhu D-H, Tan Y–Y, Dong D-K, Fu X-J, Zhu S-L, Li B-Q, Shu Q-Y (2012) Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation. Theor Appl Genet 125:1413–1423

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Natural Sciences and Engineering Research Council of Canada Discovery grants (106265) to JSG and (044191) JDB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Greenwood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 735 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Saiardi, A., Greenwood, J.S. et al. Molecular and biochemical identification of inositol 1,3,4,5,6-pentakisphosphate 2-kinase encoding mRNA variants in castor bean (Ricinus communis L.) seeds. Planta 239, 965–977 (2014). https://doi.org/10.1007/s00425-014-2028-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2028-z

Keywords

Navigation