, Volume 239, Issue 4, pp 793–801 | Cite as

No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri

  • Martin M. Vila-Aiub
  • Sou S. Goh
  • Todd A. Gaines
  • Heping Han
  • Roberto Busi
  • Qin Yu
  • Stephen B. Powles
Original Article


Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.


Evolution Fitness traits Gene over-expression Herbicide resistance Target-site resistance Weeds 



Acetolactate synthase


Days after treatment


5-Enolpyruvylshikimate-3-phosphate synthase


Lethal dose fifty


Polymerasa chain reaction


Glyposate resistant


Glyphosate susceptible



We thank Dr. Pedro E. Gundel (IFEVA-CONICET) for his valuable help in the statistical analyses. This work was supported by a grant from the Grains Research and Development Corporation (GRDC), Australia.


  1. Ashigh J, Tardif F (2007) An Ala205Val substitution in acetohydroxyacid synthase of Eastern black nightshade (Solanum ptychanthum) reduces sensitivity to herbicides and feedback inhibition. Weed Sci 55:558–565CrossRefGoogle Scholar
  2. Ashigh J, Tardif FJ (2009) An amino acid substitution at position 205 of acetohydroxyacid synthase reduces fitness under optimal light in resistant populations of Solanum ptychanthum. Weed Res 49:479–489CrossRefGoogle Scholar
  3. Ashigh J, Tardif FJ (2011) Water and temperature stress impact fitness of acetohydroxyacid synthase-inhibiting herbicide-resistant populations of eastern black nightshade (Solanum ptychanthum). Weed Sci 59:341–348CrossRefGoogle Scholar
  4. Baerson SR, Rodriguez DJ, Tran M, Feng YM, Biest NA, Dill GM (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bekaert M, Edger PP, Hudson CM, Pires JC, Conant GC (2012) Metabolic and evolutionary costs of herbivory defense: systems biology of glucosinolate synthesis. New Phytol 196:596–605PubMedCrossRefGoogle Scholar
  6. Bergelson J, Purrington CB (1996) Surveying patterns in the cost of resistance in plants. Am Nat 148:536–558CrossRefGoogle Scholar
  7. Cohan FM, King EC, Zawadzki P (1994) Amelioration of the deleterious pleiotropic effects of an adaptive mutation in Bacillus subtilis. Evolution 48:81–95CrossRefGoogle Scholar
  8. Culpepper AS, Grey TL, Vencill WK, Kichler JM, Webster TM, Brown SM, York AC, Davis JW, Hanna WW (2006) Glyphosate-resistant Palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Sci 54:620–626CrossRefGoogle Scholar
  9. Field LM, Foster SP (2002) Amplified esterase genes and their relationship with other insecticide resistance mechanisms in English field populations of the aphid, Myzus persicae (Sulzer). Pest Manag Sci 58:889–894PubMedCrossRefGoogle Scholar
  10. Fisher RA (1928) The possible modification of the response of the wild type to recurrent mutations. Am Nat 62:115–126CrossRefGoogle Scholar
  11. Fisher RA (1958) The genetical theory of natural selection. Dover Publications, New YorkGoogle Scholar
  12. Gaines TA, Zhang W, Wang D, Bukun B, Chisholm ST, Shaner DL, Nissen SJ, Patzoldt WL, Tranel PJ, Culpepper AS, Grey TL, Webster TM, Vencill WK, Sammons RD, Jiang J, Preston C, Leach JE, Westra P (2010) Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci USA 107:1029–1034PubMedCentralPubMedCrossRefGoogle Scholar
  13. Gaines TA, Shaner DL, Ward SM, Leach JE, Preston C, Westra P (2011) Mechanism of resistance of evolved glyphosate-resistant Palmer amaranth (Amaranthus palmeri). J Agric Food Chem 59:5886–5889PubMedCrossRefGoogle Scholar
  14. Gaines TA, Wright AA, Molin WM, Lorentz L, Riggins CW, Tranel PJ, Beffa R, Westra P, Powles SB (2013) Identification of genetic elements associated with EPSPS gene amplification. Plos One. doi: 101371/journalpone0065819 (in press)Google Scholar
  15. Gassmann AJ (2005) Resistance to herbicide and susceptibility to herbivores: environmental variation in the magnitude of an ecological trade-off. Oecologia 145:575–585PubMedCrossRefGoogle Scholar
  16. Ge X, d’Avignon DA, Ackerman JJH, Sammons RD (2010) Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Manag Sci 66:345–348PubMedCentralPubMedGoogle Scholar
  17. Guillemaud T, Raymond M, Tsagkarakou A, Bernard C, Rochard P, Pasteur N (1999) Quantitative variation and selection of esterase gene amplification in Culex pipiens. Heredity 83:87–99PubMedCrossRefGoogle Scholar
  18. Heap I (2013) The international survey of herbicide resistant weeds. Available in Accessed May 2, 2013
  19. Herms DA, Mattson WJ (1992) The dilemma of plants––to grow or defend. Q Rev Biol 67:283–335CrossRefGoogle Scholar
  20. Jasieniuk M, Brûlé-Babel AL, Morrison IN (1996) The evolution and genetics of herbicide resistance in weeds. Weed Sci 44:176–193Google Scholar
  21. Lenormand T, Guillemaud T, Bourguet D, Raymond M (1998) Appearance and sweep of a gene duplication: adaptive response and potential for new functions in the mosquito Culex pipiens. Evolution 52:1705–1712CrossRefGoogle Scholar
  22. Li M, Yu Q, Han H, Vila-Aiub MM, Powles SB (2013) ALS herbicide resistance mutations in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity. Pest Manag Sci 69:689–695PubMedCrossRefGoogle Scholar
  23. Lorraine-Colwill DF, Powles SB, Hawkes TR, Hollinshead PH, Warner SAJ, Preston C (2003) Investigations into the mechanism of glyphosate resistance in Lolium rigidum. Pestic Biochem Physiol 74:62–72CrossRefGoogle Scholar
  24. Menchari Y, Chauvel B, Darmency H, Delye C (2008) Fitness costs associated with three mutant acetyl-coenzyme A carboxylase alleles endowing herbicide resistance in black-grass Alopecurus myosuroides. J Appl Ecol 45:939–947CrossRefGoogle Scholar
  25. Michitte P, De Prado R, Espinoza N, Ruiz-Santaella JP, Gauvrit C (2007) Mechanisms of resistance to glyphosate in a ryegrass (Lolium multiflorum) biotype from Chile. Weed Sci 55:435–440CrossRefGoogle Scholar
  26. Nilsson AI, Zorzet A, Kanth A, Dahlström S, Berg OG, Andersson DI (2006) Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc Natl Acad Sci USA 103:6976–6981PubMedCentralPubMedCrossRefGoogle Scholar
  27. Paris M, Roux F, Berard A, Reboud X (2008) The effects of the genetic background on herbicide resistance fitness cost and its associated dominance in Arabidopsis thaliana. Heredity 101:499–506PubMedCrossRefGoogle Scholar
  28. Powles SB (2010) Gene amplification delivers glyphosate-resistant weed evolution. Proc Natl Acad Sci USA 107:955–956PubMedCentralPubMedCrossRefGoogle Scholar
  29. Powles SB, Yu Q (2010) Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol 61:317–347PubMedCrossRefGoogle Scholar
  30. Purrington CB, Bergelson J (1999) Exploring the physiological basis of costs of herbicide resistance in Arabidopsis thaliana. Am Nat 154:S82–S91CrossRefGoogle Scholar
  31. Raymond M, Poulin E, Boiroux V, Dupont E, Pasteur N (1993) Stability of insecticide resistance due to amplification of esterase genes in Culex pipiens. Heredity 70:301–307CrossRefGoogle Scholar
  32. Roux F, Gasquez J, Reboud X (2004) The dominance of the herbicide resistance cost in several Arabidopsis thaliana mutant lines. Genetics 166:449–460PubMedCentralPubMedCrossRefGoogle Scholar
  33. Shaner DL, Nadler-Hassar T, Henry WB, Koger CH (2005) A rapid in vivo shikimate accumulation assay with excised leaf discs. Weed Sci 53:769–774CrossRefGoogle Scholar
  34. Steinrücken HC, Amrhein N (1980) The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem Biophys Res Commun 94:1207–1212PubMedCrossRefGoogle Scholar
  35. Stoebel DM, Dean AM, Dykhuizen DE (2008) The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products. Genetics 178:1653–1660PubMedCentralPubMedCrossRefGoogle Scholar
  36. Tardif FJ, Rajcan I, Costea M (2006) A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii. New Phytol 169:251–264PubMedCrossRefGoogle Scholar
  37. Uyenoyama M (1986) Pleiotropy and the evolution of genetic systems conferring resistance to pesticides. In: Glass E (ed) Pesticide resistance strategies and tactics for management. National Academy of Sciences, Washington, pp 207–221Google Scholar
  38. Vila-Aiub MM, Neve P, Powles SB (2005) Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol 167:787–796PubMedCrossRefGoogle Scholar
  39. Vila-Aiub MM, Neve P, Powles SB (2009a) Evidence for an ecological cost of enhanced herbicide metabolism in Lolium rigidum. J Ecol 97:772–780CrossRefGoogle Scholar
  40. Vila-Aiub MM, Neve P, Powles SB (2009b) Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytol 184:751–767PubMedCrossRefGoogle Scholar
  41. Vila-Aiub MM, Neve P, Roux F (2011) A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 107:386–394PubMedCentralPubMedGoogle Scholar
  42. Vila-Aiub MM, Balbi MC, Distéfano AJ, Fernandez L, Hopp E, Yu Q, Powles SB (2012) Glyphosate resistance in perennial Sorghum halepense (Johnson grass) endowed by reduced glyphosate translocation and leaf uptake. Pest Manag Sci 68:430–436PubMedCrossRefGoogle Scholar
  43. Wagner A (2005) Energy constraints on the evolution of gene expression. Mol Biol Evol 22:1365–1374PubMedCrossRefGoogle Scholar
  44. Wakelin AM, Preston C (2006) A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:432–440CrossRefGoogle Scholar
  45. Wang T, Picard JC, Tian X, Darmency H (2010) A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type. Heredity 105:394–400PubMedCrossRefGoogle Scholar
  46. Wang W, Xia H, Yang X, Xu T, Si HJ, Cai XX, Wang F, Su J, Snow AA, Lu BR (2013) A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytol. doi: 10.1111/nph.12428 PubMedCentralGoogle Scholar
  47. Ward SM, Webster TM, Steckel LE (2013) Palmer amaranth (Amaranthus palmeri): a review. Weed Technol 27:12–27CrossRefGoogle Scholar
  48. Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6:207–215CrossRefGoogle Scholar
  49. Weiner J, Campbell LG, Pino J, Echarte L (2009) The allometry of reproduction within plant populations. J Ecol 97:1220–1233CrossRefGoogle Scholar
  50. Yu Q, Han H, Vila-Aiub MM, Powles SB (2010) AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. J Exp Bot 61:3925–3934PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Martin M. Vila-Aiub
    • 1
    • 2
  • Sou S. Goh
    • 1
  • Todd A. Gaines
    • 1
  • Heping Han
    • 1
  • Roberto Busi
    • 1
  • Qin Yu
    • 1
  • Stephen B. Powles
    • 1
  1. 1.Australian Herbicide Resistance Initiative (AHRI)-School of Plant BiologyUniversity of Western Australia (UWA)CrawleyAustralia
  2. 2.Facultad de Agronomía, Departamento de Ecología, IFEVA-CONICETUniversidad de Buenos Aires (UBA)Buenos AiresArgentina

Personalised recommendations