Planta

, Volume 239, Issue 2, pp 277–297 | Cite as

Flower senescence: some molecular aspects

Review

Abstract

Some molecular aspects of flower senescence have been reviewed. The isolation, identification and characterization of different genes from various flowers (mainly from petals) associated with senescence have been discussed. The isolated genes were divided into different groups. A large proportion of genes have been found to be upregulated during flower senescence while some genes were also found to be downregulated indicating that there exists a complex interplay between the expression patterns of various genes. The genes involved in petal expansion are found to be upregulated during normal flower development from anthesis to open flower stage, but XTH (Xyloglucan endotransglucosylase hydrolase) is found to be involved in petal expansion as well as abscission. Cysteine proteases or the genes encoding cysteine proteases (assigned a central role in protein degradation) have been identified from various flower systems, but no cysteine protease has been identified from senescing Mirabilis jalapa flowers. In addition to proteases, the genes encoding ubiquitin (exhibiting proteasomal degradation by 26S proteasomes) have also been identified suggesting the two alternate pathways for protein degradation. Genes encoding specific nucleases have also been identified, but they displayed an early increase in transcript abundance before the senescence symptoms become evident and characterize the involvement of PCD during flower senescence. A range of transcription factors are described and their possible role in flower senescence has been discussed. A detailed description of genes involved in ethylene synthesis and the components involved in ethylene signaling have been presented.

Keywords

Abscission Cysteine proteases Ethylene Expansion Senescence PCD 

Introduction

Senescence, aging and death, conceived of in the past as inevitable, negative processes, are now considered an integral part of differentiation and development. Senescence involves a highly regulated gene expression and the presence of concerted mechanisms of cellular degradation (Yamada et al. 2007). The processes of senescence and senescence-induced PCD are regulated by a coordinated signaling pathway, which is consistent with the view that senescence involves PCD (Coupe et al. 2004). PCD is an active process that is regulated at both transcriptional and translational levels (Lawton et al. 1990; Nooden et al. 1997). Literature concerned with the physiology and biochemistry of flower senescence has been updated from time to time by various authors (Stead 1992; van Doorn and Stead 1997; Rubinstein 2000; van Doorn 2001; Zhou et al. 2005; Eason 2006; Rogers 2006; Tripathi and Tuteja 2007; van Doorn and Woltering 2008; Shahri and Tahir 2011). In our previous review (Shahri and Tahir 2011), we reported different strategies of flower senescence and some important events associated with it. The present review presents the information gathered from a number of recent research papers on isolation, characterization and identification of genes expressed during flower senescence with the intention to update the available literature on some molecular aspects of flower senescence, as in-depth understanding of the senescence and its regulation at molecular level is essential for bringing the possible improvement in floricultural crops like cut flowers and ornamentals.

Genes associated with flower senescence: an overview

Genes associated with senescence have been isolated from a number of flowers exhibiting ethylene-sensitive, ethylene-insensitive or intermediate pattern of senescence (Lawton et al. 1990; Hunter et al. 2002; van Doorn et al. 2003; Breeze et al. 2004; Hoeberichts et al. 2007; Xu et al. 2007a). A large population of genes associated with flower senescence have been identified and isolated in Narcissus, Alstroemeria, Iris, Mirabilis, etc. (Channelière et al. 2002; Hunter et al. 2002; van Doorn et al. 2003; Breeze et al. 2004; Xu et al. 2007a). Some of the genes have been found to be upregulated while others downregulated during flower senescence. The genes upregulated during normal developmental petal senescence relate to remobilization of nutrients, and include proteases, nucleases, lipases and transporters (Hong et al. 2000; Wagstaff et al. 2002; Langston et al. 2005; Price et al. 2008). A general overview of some of the important genes or transcripts isolated from various flower systems is provided in Table 1. The expression pattern of these genes has been found to be spatially as well as temporally regulated. The spatial regulation is evidenced by a rose homolog of the ArabidopsisAPETALA3 gene (jD10) and a rose homolog of BrassicaP8 gene whose expression has been found to be more abundant in petals and stamens than other floral organs. An example of temporal regulation of gene expression during petal senescence is shown by the transcripts corresponding to two putative transcription factor genes (eG04 and lD10) which were found to be abundantly expressed in old and senescing flowers than in petals of young flowers. Similar expression patterns have been found to be shown by the transcripts encoding a zinc-finger containing protein- LSD1 (lesion simulating disease: BoLSD1, BoLSD2), Bax inhibitor (BoBI-1, BoBI-2) and serine palmitoyltransferase (BoSPT1 and BoSPT2) whose mRNAs have also been found to increase during harvest-induced senescence in broccoli floret tissues Coupe et al. (2004). The broccoli LSD cDNAs (BoLSD1 and BoLSD2) are reported to encode predicted proteins (193 amino acids long), with molecular weights of 20.3 and 20.5 kDa, respectively, whereas BoBI-1 and BoBI-2 encode a 247 amino acid protein (27.5 kDa) and a 246 amino acid protein (27.3 kDa), respectively. Structurally, both BoBI-1 and BoBI-2 proteins have been reported to contain six membrane-spanning domains and it has been suggested that the six putative transmembrane domains in the BI proteins might form ion-conducting channels in a similar manner to the mitochondria membrane pore-forming Bcl-2 and Bax proteins (Lam et al. 2001). As far as the functional aspect of Bax inhibitor-1 (BI-1) is concerned, it is regarded as the most intensively characterized cell death suppressors conserved between plants and mammals (Hückelhoven 2004; Watanabe and Lam 2009) and has been reported to be endoplasmic reticulum (ER)-resident transmembrane protein (25–27 kDa with a hydrophobic tail at the C-terminus) that can interact with multiple partners to alter intracellular Ca2+ flux control and lipid dynamics. Like mammalian BI-1, plant BI-1 genes have also been found to express in various tissue types (leaf, root, stem, flower, fruit, etc.) and their expression levels have been found to be usually enhanced during aging (senescence) and under stress conditions, suggesting that BI-1 function is physiologically associated with cell death control and/or stress management (reviewed in Ishikawa et al. 2011). BoSPT1 (603 bp) has been reported to encode a predicted protein of 121 amino acids while BoSPT2 (573 bp) encodes a predicted protein of 103 amino acids. Yamada et al. (2007) isolated several senescence-associated genes (SAGs) from the petals of morning glory (Ipomoea nil) flowers. Two cell wall-related genes, one encoding an extensin (plant structural cell wall proteins implicated in growth and in disease resistance response) and one a caffeoyl-CoA-3-O-methyl transferase (involved in lignin production) have been found to be upregulated during early floral development while as a pectin acetyl asterase (implicated to be involved in cell wall degradation) has been found to be upregulated after flower opening.
Table 1

An overview of the genes involved in flower senescence

Source

Genes/transcripts/cDNAs isolated

Possible biological functions

References

Rose

EF1α (Elongation factor 1α), genes encoding metallothioneins, a receptor-like kinase, transcription factors (eG04 and lD10), GAPDH; (Glyceraldehyde-3-phosphate dehydrogenase), a rose homolog of the ArabidopsisAPETALA3 gene jD10 and a rose homolog of the BrassicaP8 gene

Protein and lipid turnover (protein synthesis), defense/stress, signal transduction, transcription, secondary metabolism (scent production), signaling role in programmed cell death or apoptosis and floral organ identity (petals)

Channelière et al. (2002)

Daffodil

Genes encoding serine and cysteine proteases

Proteolysis and remobilization

Hunter and Reid (2001), Hunter et al. (2002)

Iris

Sequences encoding Grap 2 and Cyclin D interacting protein, a MADS-domain transcription factor, a casein kinase and a nucleotide-gated ion channel-interacting protein

Regulation of flower senescence in Iris

van Doorn et al. (2003)

Mirabilis

Homologs of a range of transcription factors (Ring Zinc-finger protein) and proteases (upregulated genes)

Protein turn over and degradation and transcriptional regulation

Xu et al. (2007a)

A homolog of CCA1 (a ‘clock gene’ identified in Arabidopsis thaliana), a Xa21 receptor-type protein kinase and an aspartyl protease. (downregulated genes)

Proteolysis and developmental control

Alstroemeria

Partial cDNA of the senescence-related gene Alstroemeria Defender Against Death 1 (ALSDAD1)

Regulation of flower senescence

Wagstaff et al. (2003)

Broccoli

A zinc-finger containing protein- LSD1 (lesion simulating disease: BoLSD1, BoLSD2), Bax inhibitor (BoBI-1, BoBI-2) and serine palmitoyltransferase (BoSPT1 and BoSPT2)

Suppression of cell death,

Regulation of sphingolipid signaling pathway

Alter intracellular Ca2+ flux control and lipid dynamics

Cell death control and/or stress management

Coupe et al. (2004)

Ipomoea nil

Two cell wall related genes (one encoding an extensin and the other a caffeoyl-CoA-3-O-methyl transferase), a pectin acetyl asterase, genes homologous to alcohol dehydrogenase and three cysteine proteases, a leucine-rich repeat receptor protein kinase and a 14-3-3 protein (a protein kinase). Genes encoding putative SEC14 and ataxin-2

Growth and in disease resistance response

Lignin production

Cell wall degradation

Remobilization of essential nutrients

Signal transduction

Golgi vesicle transport

RNA metabolism

Yamada et al. (2007)

Ipomoea nil

Genes homologous to animal PCD genes [(Bax inhibitor-1 (BI-1), a vacuolar processing enzyme (VPE: homologous to caspases) and a monodehydroascorbate reductase [(MDAR: homologous to Apoptosis inducing factor (AIF)], vacuolar protein sorting 34 (VPS34) and Arabidopsis autophagy related proteins 4b and 8a (ATG4b and ATG8a)

Cell death suppression

Vacuolar autophagy

Protein turnover

Yamada et al. (2009)

Moreover, the identification of plant genes homologous to animal PCD (apoptosis) genes has been recently reported by Yamada et al. (2009) from the senescent petals of Ipomoea nil that included a Bax inhibitor-1 (BI-1), a vacuolar processing enzyme (VPE: homologous to caspases) and a monodehydroascorbate reductase [(MDAR: homologous to Apoptosis inducing factor (AIF)]. In addition, microarray screens and analyses of individual genes have revealed that a number of genes, generally considered to be stress-related, are also upregulated during petal senescence. These include metallothioneins, abscisic acid responsive genes and glutathione-S-transferases (Meyer et al. 1991; Channelière et al. 2002; Breeze et al. 2004; Price et al. 2008). In Ipomoea, genes-In12, In15 and In21 have been found to encode products related to stress responses (Yamada et al. 2007). Of the genes upregulated in wall flower petals specifically, 40 % have been found to encode chitinases, 23 % encode GSTs, 9 % are involved in reactive oxygen species (ROS)/stress responses, 9 % are involved in signaling, 6 % in remobilization/metabolism, 2 % in transcriptional regulation, 2 % in metal binding, and a further 9 % are of unknown function (Price et al. 2008). Of the GST genes identified in wall flower, two genes have been found to be most similar to AtGSTF2 and AtGSTF3 from Arabidopsis. Both AtGSTF2 and AtGSTF3 have a putative ethylene-responsive enhancer element in their promoter sequences similar to that of a petal senescence-enhanced GST from carnation (Itzhaki et al. 1994). Both genes are members of the phi (ϕ) class of GSTs from Arabidopsis and have been suggested to function as glutathione peroxidases (Wagner et al. 2002). It has been postulated that GST activity may protect a senescing cell from lipid hydroperoxides prior to the actual cell death (Meyer et al. 1991). An important observation during Alstroemeria senescence is that the pattern of gene expression induced by ambient dehydration stress has been found to be similar to that seen during developmental senescence, whereas the pattern elicited by cold stress is different, as has been confirmed in the case of three genes: a metallothionein and two genes related to remobilization and proteolysis, respectively, indicating that some processes such as remobilization and ubiquitin-mediated proteolysis, associated in Alstroemeria are being activated by stress treatment (Wagstaff et al. 2010).

To sum up, it can be concluded that the genes upregulated during normal developmental petal senescence relate to remobilization of nutrients (proteases, nucleases, lipases and transporters), regulatory genes (transcription factors: NAC-domain transcription factors, Zinc-finger proteins), stress-related genes (Metallothioneins, Abscisic acid responsive genes, Glutathione-S-transferases), signal transduction genes (various classes of protein kinases: Xa21 receptor-like protein kinase, casein kinase, leucine-rich receptor kinase, 14-3-3 protein kinase), genes encoding different types of proteases (Cysteine proteases, Serine proteases, Aspartic proteases), 26S-proteasome machinery genes (involved in protein ubiquitination by 26S proteasomes), Cell wall degrading genes (Pectin acetyl transferase), Bax inhibitor genes, genes encoding Vacuolar processing enzymes (VPE) and genes related to RNA metabolism (Ataxin-2). Similarly, the genes that were found to be downregulated included genes encoding MADS-domain transcription factors, MYB transcription factors, gibberellin-induced protein, Cytochrome P450, a homolog of ‘clock gene’ (CCA1), aspartyl protease (in senescing Mirabilis flowers) and Defender against Apoptotic Death (ALSDAD1). Thus, it is indicative of the fact that mechanism of flower senescence involves a continuous interplay of various genes that are differentially regulated in a spatio-temporal manner to bring the execution and advancement of events leading to senescence. Keeping in view the above summary, we will now discuss the various kinds of genes involved in flower senescence under the following headings.

Genes involved in cell wall expansion and abscission

Of the various genes involved in cell wall expansion, the genes encoding expansins are considered as primary regulators of cell enlargement in plants. Expansins are reported to be cell wall-located proteins and act in plant cell walls by disrupting non-covalent binding between matrix glycan cellulose microfibrils (Cosgrove 1999a, b, 2000b). Screening of the transcripts isolated from senescing carnation flowers has revealed the presence of at least three transcripts of which the most abundant one has been found to be strongly homologous to an Arabidopsis thaliana β-xylosidase gene (involved in senescence related to cell wall expansion; Goujon et al. 2003) while the two other transcripts homologous to expansin-encoding genes (involved in cell wall loosening during growth or disassembly; Cosgrove 2000a). Disassembly of the primary cell walls is regarded as an important process in the progression of chrysanthemum flower senescence (Elanchezhian and Srivastava 2001). While conducting the expression studies of two expansin genes (DcExp1 and DcExp2; sharing 76 % identity with each other) in carnation flowers, Song et al. (2007) reported the expression of DcExp2 in early flower development (as its expression decreased during senescence) while the expression of other transcript DcExp1 has not been detected at any stage of flower development. It is therefore suggested that DcExp2 might be involved in senescence progress of the cut carnation flowers at earlier stages and that DcExp1 might have some other developmental role which needs to be ascertained. Similar studies conducted by Yamada et al. (2007) have also identified a gene, In07 in Ipomoea that too encodes a putative extensin-like protein. Moreover, the expansin gene, GgEXPA1 (Gibberellic acid responsive gene in gladiolus) has been reported to be expressed prominently during phases of active tepal expansion and cell elongation in stamen filaments, gynoecium styles and expanding leaves but not in tissues where expansion had ceased and senescence had been initiated (Azeez et al. 2010). Recently, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1-DcXTH4) and three cDNAs encoding expansin genes (DcEXPA1-DcEXPA3) have been cloned and characterized from petals of opening carnation flowers of which two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) have been reported to be associated with petal growth and development during flower opening (Harada et al. 2011b). Moreover, the analysis of five transcripts (RhCG1, RhCG2, RhCG4, RhCG6 and RHAG1) from two rose cultivars (‘Black magic’ and ‘Maroussia’) by Hajizadeh et al. (2011a) also revealed the presence of the transcripts that encode the products involved in cell wall expansion and degradation during senescence, e.g., RhCG6 has been found to share 65 % sequence similarity with the gene encoding apple β-galactosidase protein. van Doorn et al. (2003) and O’Donoghue et al. (2009) have demonstrated that there occurs an increase in galactosidase transcript abundance during Iris hollandica and Petunia petal senescence, that encodes an enzyme involved in cell wall degradation. Similarly RhAG1 homolog has been found to share 30 % similarity to Petunia arabinogalactan protein. Arabinogalactan-proteins (AGPs) are cell wall proteoglycans containing a high proportion of carbohydrate (typically > 90 %), widely distributed in plant species and are located at the plasma membrane and secondary cell wall and in the media of cell cultures. It has been suggested that certain AGPs contribute in cell expansion (Shi et al. 2003), seed germination, in vitro root regeneration (van Hengel and Roberts 2003), and response to abscisic acid (Johnson et al. 2003; van Hengel and Roberts 2003).

In addition to the genes involved in cell expansion, a number of transcripts or genes involved in abscission of flowers or floral parts have been identified and characterized from different flower systems, e.g., five ethylene-responsive cDNAs have been isolated from Rosa hybrida and identified as an ethylene-induced cDNA homologous to a laccase gene (RhLAC gene). Three cDNAs have been isolated from petioles and two from pedicels. The gene has been found to encode a putative protein of 573 amino acids containing three conserved domains characteristic of the multicopper oxidase family and has been found to be highly induced in the leaf abscission zone of petioles and the bud abscission zone of floral bud pedicels, suggesting that RhLAC might play an important role in senescence and abscission in roses (Ahmadi et al. 2008). Similarly, the expression of two XTH genes (RbXTH1 and RbXTH2; share 52 % amino acid identity and are conserved at the catalytic site) in Rosa bourboniana has been found to lead to petal abscission. Transcription of these genes has been found to be ethylene responsive, with the ethylene response being tissue-specific for RbXTH1 but largely tissue-independent for RbXTH2. The Expression of these genes have been found to correlate with an increase in xyloglucan endotransglucosylase (XET) action in petal abscission zones of both ethylene-treated and field abscising flowers and it has been suggested that changes brought about by the XET action might allow easier accessibility of the wall to other hydrolytic enzymes, thereby accelerating abscission (Singh et al. 2011). Moreover, the promoter of RbXTH1 has revealed the presence of the cis-element ATTTCAAA, present in the tomato ethylene-responsive E4 gene, the carnation ethylene-responsive GST1 gene, and the rose cysteine protease promoter (Montgomery et al. 1993; Itzhaki et al. 1994; Tripathi et al. 2009). However, RbXTH2 has not been found to contain any known ethylene-responsive elements, although sequences related to ATTTCAAA have been found, indicating that the ethylene-responsive expression in RbXTH2 might be conferred by cis-elements other than the GCC box and the ATTTCAAA elements or by the modified ATTTCAAA. In Arabidopsis, the BOP (BLADE-ON-PETIOLE2) gene has been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. A homolog of BOP gene from tobacco, NtBOP2 has been reported to be predominantly expressed at the base of the corolla in an ethylene-independent manner and that its antisense suppression has been found to cause a significant delay in corolla shedding (Wu et al. 2012).

From the above studies, it is evident that although the expression levels of expansin genes decline during senescence, they are important for the regulation of normal developmental program in different floral tissues eventually leading to the progression of senescence program. Furthermore, the role of XTH genes is dynamic, i.e., they are involved in cell wall expansion leading to opening of flowers and growth as well as in abscission of flowers and floral parts.

Genes encoding cysteine proteases and ubiquitin

The degradation of proteins is one of the hallmarks of senescence or PCD which is brought about by a variety of proteases and ubiquitin-mediated proteasomes. Of these proteases, cysteine proteases have been exclusively reported to be involved and thought to mediate remobilization of essential nutrients from senescing floral tissues. Genes encoding cysteine proteases have been shown to be induced during the onset of senescence in various flower systems as listed in Table 2. Of the various cysteine protease genes, some are known to act as developmental markers of senescence, e.g., SAG12 in Arabidopsis, BnSAG12-1 and BnSAG12-2 in Brassica napus, PhCP10 from Petunia hybrida, etc. (Noh and Amasino 1999; Jones et al. 2005). In almost all flowers systems, cysteine protease genes have been reported to be upregulated during senescence with the exception of three genes (PhCP4, PhCP6 and PhCP7) from P. hybrida which are downregulated, implicating their role in protein turnover during normal developmental process (Jones et al. 2005). Moreover, the gene PhCP6 has been found to be of particular interest because it was found to have homology to CysEP from castor bean and other KDEL-containing cysteine proteases. CysEP is localized with membrane-bound organelles called ricinosomes that are found at the beginning of PCD. Acidification of the ricinosomes during the later stages of cell death causes activation and release of CysEP following cleavage of the N-terminal propeptide and the C-terminal KDEL (Schmid et al. 1998, 2001). The recently characterized RbCP1 gene from rose petals has been reported to encode a putative 37 kDa cysteine protease (357 amino acids) belonging to a typical papain type protease (having the presence of the CIA peptidase domain and the ERFNIN motif; Tripathi et al. 2009). Similarly in carnation, one of the identified cysteine protease gene has been found to display homology to a tobacco vacuolar processing enzyme (VPE: a caspase-like protein associated with senescence and virus-induced hypersensitive cell death: (Hatsugai et al. 2006; Hoeberichts et al. 2007). However, no cysteine protease has been isolated from senescing Mirabilis Jalapa flowers (Xu et al. 2007a).
Table 2

Genes encoding cysteine proteases

Source

Genes/transcripts/cDNAs isolated

Possible biological functions

References

Dianthus

pDcCP1

Remobilization of nutrients from the petals to the developing ovary

Jones et al. (1995)

Hemerocallis

SEN10

Hydrolysis of soluble proteins (indicating Petal PCD)

Valpuesta et al. (1995)

Broccoli

BoCP2

Dehydration responsive and postharvest protein degradation

Guerrero et al. (1998)

Arabidopsis thaliana

SAG12

Developmental markers of senescence

Noh and Amasino (1999)

Brassica napus

BnSAG12-1 and BnSAG12-2

Sandersonia

PRT22

Protein degradation

Eason et al. (2002)

Narcissus

DAFSAG2

Proteolysis and remobilization during later stages of senescence

Hunter et al. (2002)

Alstroemeria

ALSCYP1

Proteolysis

Wagstaff et al. (2002)

Petunia hybrida

9 genes (PhCP2PhCP10)

Protein degradation and remobilization

Jones et al. (2005)

Ipomoea nil

In15 and In21

Senescence-specific proteolysis

Yamada et al. (2007)

Rosa

RbCP1

Protein degradation and petal abscission

Tripathi et al. (2009)

In addition to cysteine endopeptidases, the genes encoding ubiquitin involved in proteasomal protein degradation have been identified from various flower systems, e.g., partial cDNA of ubiquitin (ALSUQ1) from Alstroemeria, a gene encoding polyubiquitin (an essential element in ubiquitin pathway) form M. jalapa, and transcripts from carnation homologous to genes encoding the components of the 26S proteosome machinery (RPT6, RPN2), a Ring finger protein and a U-box containing protein (Wagstaff et al. 2002; Hoeberichts et al. 2007; Xu et al. 2007a). The identification and upregulation of a Ring Zinc finger ankyrin protein (MjXB3) have also been reported from senescing M. jalapa flowers which share similarity to XBAT31 and XBAT32 of A. thaliana and Glycine max, respectively. Although the role of XBAT31 has not been clearly demonstrated, XBAT32 has been found to be expressed in root cortical cells during development-induced PCD and plays an important role in ethylene synthesis/signaling (Kosslak et al. 1997; Nodzon et al. 2004; Xu et al. 2007b; Prasad and Stone 2010). These ankyrin repeat RING domain-containing proteins are reported to have ubiquitin ligase activity (for which the RING domains are essential) and have been found to share high homology to that of E3-type binding proteins/ubiquitin ligases that targets proteins for proteolysis via ubiquitin pathway (Lorick et al. 1999; Schnell and Hicke 2003; Stone et al. 2005; Wang et al. 2006). These ubiquitin ligases are known to play diverse roles in plants as listed in Table 3. Of the different types of ubiquitin ligases, the MjXB3 (isolated from Mirabilis flowers) has been fully characterized containing an open reading frame (ORF) of 1,341 bp. When compared to genes encoding Ring Zinc finger ankyrin proteins from other plant sources, high conservation of amino acids in the RING Zinc finger and ankyrin repeat domains and diversion beyond these domains has been deduced. Moreover, the promoter sequence (2 kb) of MjXB3 gene has been found to include putative binding sites for many DNA-binding proteins, including the bZIP, Myb homeodomain-leucine zipper (HD-Zip), MADS box, and WRKY transcription factors. The number of DNA-binding elements on the promoter has been found to be consistent with the network model of senescence control as has been suggested by He et al. (2001). MJXB3 promoter has been found to be senescence-specific promoter in flowers as against SAG12 of Arabidopsis which could not drive some GUS expression in fresh Petunia and carnation corollas. GUS expression under the control of the heterologous fragment (construct containing a 1 kb promoter region immediately upstream of the MjXB3 gene) has been found to be specific to senescing Petunia and carnation flowers while no expression has been detected in three monocotyledonous flowers—day lily, daffodil and orchid Dendrobium (Xu et al. 2007b). On the other hand, the role of FOREVER YOUNG FLOWER (FYF; a MADS box gene in Arabidopsis) homologs in regulating flower senescence and abscission has been found to be highly conserved in both dicot and monocot plants, which is supported by the evidence that the ectopic expression of OnFYF, a FYF homolog from the Oncidium orchid (a monocot) delays flower senescence and abscission in transgenic Arabidopsis (Chen et al. 2011).
Table 3

Genes encoding ubiquitin ligases

Source

Genes/transcripts/cDNAs isolated

Possible biological functions

References

Glycine

XBAT32

Development-induced PCD and ethylene synthesis/signaling

Kosslak et al. (1997)

Arabidopsis

BHR1

A part of the brassinosteroid response/pathogen response

Molnar et al. (2002)

TED3/AtPex2p

Light signaling

Hu et al. (2002)

ATL2

Plant defense

Serrano and Guzman (2004)

XBAT31

Not clearly demonstrated

Nodzon et al. (2004)

Xerico

Drought resistance and homeostasis of various plant hormones

Ko et al. (2006)

Rice

XB3 (XA21 binding protein 3)

Pathogen-induced type of programmed cell death

Wang et al. (2006)

Mirabilis

MjXB3

Coordination of the senescence program

Xu et al. (2007b)

Thus, there has been upregulation of both cysteine proteases and 26S proteasome-mediated ubiquitin pathway during flower senescence suggesting the two alternative pathways of protein degradation (proteasomal as well as non-proteasomal). However, some flowers show upregulation of both cysteine endopeptidases as well as ubiquitin ligases during flower senescence (e.g., carnation, Alstroemeria) while others show only upregulation of ubiquitin ligases (e.g., M. jalapa). The role of cysteine proteases has been implicated in major protein degradation and remobilization besides abscission of flowers or floral parts as the ubiquitin genes have been found to only fluctuate during senescence. Of the various RING Zinc-finger ankyrin proteins (ubiquitin ligases), only XBAT32 has been found to be involved in ethylene synthesis/signaling while MjXB3 (isolated from M. jalapa) has no known function but thought to be involved in coordination of the senescence program.

Genes involved in nucleic acid degradation

Specific nuclease activities that can degrade both RNA and DNA have been reported to be induced in flower petals (Panavas et al. 1999; Xu and Hanson 2000; Hunter and Reid 2001). Some of the important genes or transcripts encoding nucleases during petal senescence are listed in Table 4. The PhNUC1 has been found to be Co-dependent senescence-specific nuclease being expressed during the natural senescence of pollinated flowers and induced in non-senescing corollas by treatment with ethylene. Similar senescence-specific expression has been reported in a cDNA fragment, encoding a putative nuclease (DcNUC1). However, the activation of tomato BFN1 has reported to occur well before the initiation of senescence (Farage-Barhom et al. 2008), thereby pointing out the early nuclear degradation (possibly involving PCD) as demonstrated by Hoeberichts et al. (2005) in flower petals of Gypsophila. Moreover, it has also been suggested that in Alstroemeria petals, PCD processes are initiated extremely early at a similar location on the petals to that observed for expression of the BFN1 promoter in tomato (Wagstaff et al. 2003). Cloning of the ArabidopsisBFN1 gene and sequencing of the corresponding polypeptide (protein) by Perez-amador et al. (2000) have revealed the similarity of the BFN1 protein to DSA6 nuclease (involved in petal senescence; Panavas et al. 1999) and ZEN1 nuclease (associated with PCD during tracheary element differentiation; Ito and Fukuda 2002). The regulation and expression pattern of BFN1 has been analyzed by cloning its 2.3 kb portion of the 5′ promoter sequence and then by detecting its ability to activate the GUS reporter gene construct. The BFN1 promoter has been specifically found to be capable of directing GUS expression in senescent leaves, differentiating xylem and abscission zones of petals in transgenic Arabidopsis and tomato plants. It has also been found active in other tissues, including developing anthers and seeds, and in floral organs after fertilization (Farage-Barhom et al. 2008). It has been suggested that BFN1 might be involved in developmental PCD-related processes in Arabidopsis, as well as in senescence. Investigations on the intracellular localization of BFN1 in transiently transformed tobacco protoplasts have revealed their initial localization in filamentous structures (being of ER origin) spread throughout the cytoplasm, which then clustered around the nuclei as the protoplasts senesced. In transgenic Arabidopsis plants, similar localization has been observed in young leaves and during late senescence, where BFN1-GFP construct has been found to be localized with fragmented nuclei in membrane-wrapped vesicles suggesting the existence of a dedicated compartment mediating nucleic acid degradation by BFN1 in senescence and PCD processes (Farage-Barhom et al. 2011). Of the two transcripts (RhCG1 and RhCG2; sharing homology to Arabidopsis DNA helicase gene) isolated from two rose cultivars (‘Black magic’ and ‘Maroussia’), RhCG2 has been found to be differentially expressed, i.e., upregulated in flowers of ‘Black magic’ and not in ‘Maroussia’(Hajizadeh et al. 2011a). Similarly, Breeze et al. (2004) has also demonstrated the upregulation of DEAD/DEAH box helicases in Alstroemeria pelegrina during senescence.
Table 4

Genes involved in nucleic acid degradation

Source

Genes/transcripts/proteins isolated

References

Hemerocallis

DSA6

Panavas et al. (1999)

Alstroemeria pelegrina

DEAD/DEAH box helicases

Breeze et al. (2004)

Petunia hybrida

PhNUC1

Langston et al. (2005)

Dianthus caryophyllus

DcNUC1

Narumi et al. (2006)

Rose cultivars (‘Black magic’ and ‘Maroussia’)

RhCG1 and RhCG2

Hajizadeh et al. (2011a)

Tomato

BFN1

Farage-Barhom et al. (2008)

In conclusion, degradation of nucleic acids by specific nucleases during flower senescence has been demonstrated in various flower systems. A number of cDNAs encoding such nucleases have been isolated and found to be expressed well before the initiation of senescence suggesting their role in programmed execution of flower senescence. PhNUC1 has been found to be a cobalt-dependent senescence specific nuclease and both PhNUC1 and DcNUC1 have been found to be ethylene-responsive nucleases. The BFN1 nuclease has been well characterized and its intracellular localization has also been investigated. The evidences so far have suggested that nuclear degradation by the nucleases occur well before the senescence symptoms become apparent and that they might play an important role in developmental PCD-related processes as well as in progress of senescence. The involvement of nucleases is also indicative of the fact that flower senescence involves PCD.

Genes encoding various transcription factors

The transcripts encoding a range of transcription factors have been isolated and found to be differentially regulated during development and senescence in various flower systems (Table 5), e.g., a homeodomain protein (a class of proteins generally representing transcription factors), MYB-like DNA-binding protein, MYC protein and Zinc-finger protein from Dianthus and Mirabilis, MADS Box genes from carnation, Iris and Arabidopsis, NAC domain transcription factors and CEBP “Carnation ethylene-responsive element binding protein” (Waki et al. 2001; Fang and Fernandez 2002; van Doorn et al. 2003; Hoeberichts et al. 2007; Iordachescu et al. 2009; Balazadeh et al. 2010). The Iris MADS box gene has been found to share 51 % identity with RIN (a MADS-box factor involved in developmental control of fruit ripening in tomato; Vrebalov et al. 2002) and that the corresponding translated fragment from carnation shares 34 % identity with tomato RIN and 55 % identity with the Arabidopsis pistillate protein (Hoeberichts et al. 2007). The importance of MADS box transcription factors in petal or flower senescence becomes evident by the fact that overexpression in Arabidopsis MADS box gene delays petal senescence and flower abscission (Fang and Fernandez 2002). However, the exact function of these genes in the regulation of flower senescence is as yet unclear. Kaufmann et al. (2009), while searching for the target genes of the MADS box transcription factor SEPALLATA3 (SEP3; that plays an important role during flower development), observed binding of SEP3 to two sites with the ANAC092 promoter (a NAC domain transcription factor), suggesting that it functions as an upstream regulator of the NAC gene. As far as NAC domain transcription factors are concerned, they represent a large fraction of the plant-specific family of transcription factors and senescence-regulated genes in many plants (Andersson et al. 2004; Guo et al. 2004; Lin and Wu 2004; Buchanan-Wollaston et al. 2005; Balazadeh et al. 2008, 2010) implicated in a wide range of processes, including tolerance to biotic and abiotic stress, and programmed cell death in xylem tracheids and vessels (Kubo et al. 2005). The expression of one of the NAC-domain TF genes (ANAC092) has been reported from partly or fully opened flowers and mature anthers too (Balazadeh et al. 2010). These NAC-domain transcription factors have been found to be differentially expressed with the downregulation in carnation flowers during natural senescence and upregulation in senescing Arabidopsis leaves (Guo and Gan 2006; Hoeberichts et al. 2007). Of the 36 EST sequences (representing at least 24 transcription regulating genes) identified in Alstroemeria, the largest group (8 genes) has been found to be represented by Zinc-finger proteins. Employing RT-PCR, it has been confirmed that the transcript levels of the C2H2-zinc finger transcription factor peaked at closed bud stage and at mid-senescent stage whereas the MADS box gene peaked at young bud stage and open flower stage (Wagstaff et al. 2010). Myb Transcription factor genes like CCA1 and F935 have been found to be downregulated genes, probably playing a role in the control of flower opening. However, it has not been fully demonstrated whether these genes are solely involved in directing floral opening and expansion, or whether reduction in their abundance permits the onset of flower senescence. Moreover, the homologs of b-Zip and HD-Zip proteins (Plant-specific transcription factors) have been found to be upregulated in senescing Mirabilis flowers, thought to be induced in response to the changing osmotic and water relations of the opening and senescing flowers in Mirabilis Jalapa (Xu et al. 2007a) and that HD-Zip transcription factor isolated from Mirabilis has been found to be a member of HD-ZIP-I family that also includes Athb-7 and Athb-12 transcription factors from Arabidopsis thaliana (Sessa et al. 1994; Lee and Chun 1998). Furthermore, a putative transcription factor CEBP (Carnation ethylene-responsive element binding protein; a nuclear-encoded chloroplast protein) has been identified and found to be involved in ethylene signaling and in the initial steps of carnation petal senescence. CEBP and EILs (EIN3-like proteins) have been shown to bind very similar promoter regions (Maxson and Woodson 1996; Solano et al. 1998) and the decrease in CEBP mRNA accumulation has been found to be accompanied by the sudden accumulation of Dc-EIL3 during carnation petal development (Iordachescu and Verlinden 2005). The predicted CEBP protein (32 kDa) has been reported to contain two highly conserved RNA-binding motifs, RNP-1 and RNP-2, an acidic region, a C-terminal nuclear localization signal and an N-terminal chloroplast transit peptide suggesting that it can locate both to the nucleus and chloroplast (Maxson and Woodson 1996; Iordachescu et al. 2009). Although the exact role of CEBP in chloroplast remains unclear, the similar proteins have been implicated to play a role in splicing and/or processing of chloroplast RNAs (Li and Sugiura 1990).
Table 5

Genes encoding transcription factors

Source

Genes/transcripts/proteins isolated

Possible biological functions

References

Dianthus

A homeodomain protein

Transcription factors

Waki et al. (2001)

A MYB-like DNA-binding protein, a MYC protein, a MADS-box factor

Regulation of senescence but the exact role is unclear

Hoeberichts et al. (2007)

Arabidopsis

MADS box transcription factor

Delays petal senescence and abscission

Fang and Fernandez (2002)

Iris

MADS Box gene

 

van Doorn et al. (2003)

Arabidopsis

AtNAP

Leaf senescence

Guo and Gan (2006)

Mirabilis

CCA1 and F935 (Myb transcription factors)

Photoperiodic control, flower opening and maturation

Xu et al. (2007a)

b-Zip and HD-Zip protein

Regulates osmotic and water relations of the opening and senescing flowers

Dianthus

CEBP (Carnation ethylene-responsive element binding protein)

Ethylene signaling in carnation flower development and senescence

Iordachescu et al. (2009)

ANAC092

Stress and senescence regulation

Balazadeh et al. (2010)

Alstroemeria

Myb, Lim, Hap5B and MADS box transcription factors

Stress and flower senescence regulation

Wagstaff et al. (2010)

In conclusion, MADS-box transcription factors, MYB-like DNA-binding proteins, MYC protein and CEBP have been identified as downregulated genes whose transcript abundance peaked during initial stages of flower development (up to flower opening). The possible role of these genes in flower senescence is still unclear; however, they have been implicated to be involved in the initial steps of senescence process as there are evidences that overexpression of these transcription factors delays senescence. The upregulated transcription factors consist of HD-Zip proteins, B-Zip proteins and Zinc-finger proteins. NAC-domain transcription factor has been found to show differential expression in various tissue systems. It has been identified as downregulated gene in carnation petals, but found to be expressed in senescent leaves of Arabidopsis. Further SEPALLATA3 (a MADS-box transcription factor) has been found to function as upstream regulator of NAC gene. The expression of these transcription factors is either controlled by developmental signals (CCA1) or induced in response to changing osmotic and water relations of the opening and senescing flowers (HD-Zip proteins).

Genes involved in ethylene synthesis (ACC synthase and ACC oxidase genes)

In ethylene-sensitive flower systems, ACC synthase and ACC oxidase are the key enzymes involved in ethylene biosynthesis. Several genes encoding 1-amino cyclopropane-1-caboxylate (ACC) synthase and ACC oxidase have been found to be upregulated during petal wilting in senescing carnation flowers. Initially, CARACC3 has been cloned by Park et al. (1992), and found to be abundantly expressed in petals during natural and ethylene-induced flower senescence. Later, Henskens et al. (1994) isolated two cDNA clones encoding carnation ACC synthase. One of the clones has been found to be identical to CARACC3 while the other clone (CARAS1) has been found to share only 66 % sequence similarity to CARACC3 (in the amino acid sequence). CARAS1 has been found to be more abundantly expressed in the styles rather than in the petals, thereby confirming the petal-specific nature of CARACC3. In the deduced amino acid sequence of the cDNA clone CARAS1, the amino acid residue tyr-215 (conserved residue among many known aminotransferases and all known ACC synthetases) is replaced by Phe (Henskens et al. 1994; Zarembinsky and Theologis 1994). The residue has been thought to be involved in the binding of essential co-factor, Pyridoxal phosphate (Mehta et al. 1989). Henskens et al. (1994) has suggested that the gene might encode a non-functional enzyme; however, the positive correlation between CARAS1 abundance and stylar ethylene production during aging is indicative of the fact that CARAS1 does encode a functional enzyme (Have and Woltering, 1997). Ma et al. (2005) while studying the differential induction features of three ACS genes in roses found that Rh-ACS2 is strongly induced by senescence. The tissue specificity of Rh-ACS2 has been found to be quickly induced by ethylene in gynoecia (Xue et al. 2008). Similar observations have also been reported in carnation, where CARAS1 (also named as DCASC2) showed a quicker and stronger response to ethylene treatment in gynoecia than in petals (Have and Woltering 1997). All these observations suggest that Rh-ACS2, a senescence-associated gene in rose petals, might play an important role in the induction of ethylene biosynthesis in gynoecia and in promoting the flower opening process. The genomic DNA structure of DcACS1 has been successfully revealed in senescing carnation petals (Dianthus caryophyllus and D. superbus). The gene has been found to express in two different isoforms (DcACS1a and DcACS1b). Genomic PCR analysis of 32 carnation cultivars has shown that most cultivars have only DcACS1a while some have both DcACS1a and DcACS1b. Both the genes were found to have five-exon and four-intron structure. Nucleotide sequences of exons 1–3 in DcACS1a have been found to be completely identical to those in DcACS1b. However, substitution of several nucleotides has been found in exon4 and 5. Exon5 of DcACS1b has been found to be 18 nucleotides shorter than that of DcACS1a, causing shorter stretch of threonine residues characteristic to DcACS1 gene. Introns 1–3 varied from 56 to 70 %, while the nucleotide sequence of Intron 4 has been shown to be completely identical in the two genes. Nucleotide sequence of 5′-UTR has been found to be conserved in DcACS1a and DcACS1b, but that of 3′-UTR was not. Moreover, DcACS1 orthologous genes have been isolated D. superbus var. longicalycinus, designated as DsuACS1a and DsuACS1b. Exogenously applied ethylene has been found to induce autocatalytic ethylene production in petals of D. superbus var. longicalycinus with simultaneous accumulation of transcripts of DsuACS1 (Harada et al. 2011a). ACC oxidase gene has been isolated from carnation (Wang and Woodson 1991). Constitutive expression of this gene has been reported in the styles but not in other floral organs (Woodson et al. 1992). Spanu et al. (1994) suggested that the post-translational regulation of ACC synthetase protein is achieved through phosphorylation and dephosphorylation of associated proteins.

To sum up, it can be concluded that ACC synthase and ACC oxidase genes (involved in ethylene biosynthesis) have been successfully isolated and characterized in various flower systems (carnation and rose) and their differential expression in different tissue systems has also been revealed. CARACC3 gene from carnation has been found to have petal-specific expression, whereas CARAS1 from carnation and Rh-AS1 from rose have been found to express in gynoecia. The genomic DNA structure of DcACS1 (both isoforms: DcACS1a and DcACS1b) has also been revealed and its orthologous genes have also been identified. The only ACC oxidase gene identified in carnation has been reported to be constitutively expressed in the styles and not in other floral organs.

Genes encoding ethylene receptors

The induction of petal senescence or abscission by ethylene or pollination is associated with transcriptional regulation of the ACS and ACO genes (Bui and ÒNeill 1998; Jones 2003; Fernández-Otero et al. 2006) and ethylene receptor genes (Shibuya et al. 2002; Kuroda et al. 2003, 2004). This induction is also accompanied with an increase of the CTR (Constitutive Triple Response) genes in some ornamental plant species (Müller et al. 2002; Kuroda et al. 2004). Several ethylene receptors (ETRs) are now known and the molecular mechanism underlying ethylene sensitivity in plants has been studied in plants like Arabidopsis (Bleecker and Schaller 1996). Analysis of the ethylene receptor genes in Arabidopsis has led to the identification of many ETR1 and ETR1-like genes (Chang et al. 1993; Hua et al. 1995, 1998; Hua and Meyerowitz 1998; Sakai et al. 1998) encoding ETRs like ETR1, ETR2, EIN4, ERS1 and ERS2 reported to be transmembrane endoplasmic reticulum (ER) proteins with similarity to bacterial two-component histidine kinases. On the basis of their sequence similarity and structural features, these proteins have been classified into two subfamilies, i.e., ETR1-like subfamily (ETR1 and ERS1) and ETR2-like subfamily (ETR2, ERS2 and EIN4). ETR1 and ERS1 have three hydrophobic domains at the N-terminus and five consensus motifs (catalytic site subdomains typical of histidine kinases) found in bacterial histidine kinase, while ETR2, EIN4 and ERS2 have four hydrophobic domains at the N-terminus and lack most of the motifs in histidine kinases (Parkinson and Kofoid 1992; Hua et al. 1998; Klee 2002). Moreover, ETR1, ETR2 and EIN4 have been found to harbor the receiver domain [consisting of three residues (D, D and K), important for phosphorylation] that receives phosphate from the histidine kinase (transmitter) domain, while ERS1 and ERS2 lack that domain. A detailed study on the structure of ETR1 protein has revealed the presence of following components (Schaller and Bleecker 1995; Kehoe and Grossman 1996; Aravind and Ponting 1997; Bleecker et al. 1998):
  1. 1.

    Three N-terminal hydrophobic domains capable of reversibly binding to ethylene.

     
  2. 2.

    Phytochrome-related T2L and R2L domains (homologous domains with the chromophore attachment domains of phytochrome photoreceptors).

     
  3. 3.

    A GAF domain (homologous domain found in photo-transducing proteins).

     
  4. 4.

    Two domains homologous to a histidine kinase.

     
  5. 5.

    A receiver of the bacterial two-component histidine kinase system.

     
As far as the functional aspect of ETR1 is concerned, it has been found to show high-affinity ethylene binding mediated by a copper ion associated with its ethylene-binding domain that binds to Cys85 residue (essential for both copper association and ethylene binding to the receptor; Rodriguez et al. 1999). Moreover, the isolation of RAN1 gene and its role in delivering copper to ETR1 to create a functional hormone ethylene receptor has also been demonstrated (Hirayama et al. 1999). ETR1 homologs have also been isolated from other plants as listed in Table 6. Mutant alleles of ETR1, designated as etr1-1, etr1-2, etr1-3 and etr1-4 have been reported to cause ethylene insensitivity in plants. All of these mutations have been found to result from a single amino acid replacement (Ala31 to Val in etr1-3, Ile62 to Phe in etr1-4, Cys65 to Tyr in etr1-1, and Ala102 to Thr in etr1-2) in the three hydrophobic domains (Chang et al. 1993). Transformation of petunias with the mutated ethylene receptor gene (etr1-1) from Arabidopsis has been found to reduce ethylene sensitivity in flowers and thereby delay senescence (Wilkinson et al. 1997), while Nicotiana sylvestris plants expressing the dominant mutant ethylene receptor gene ETR1-1 from Arabidopsis has been found to exhibit a substantial delay in both the onset and progression of leaf and flower senescence (Yang et al. 2008).
Table 6

Genes encoding ethylene receptors

Source

Genes/transcripts/cDNAs isolated

References

Arabidopsis

ETR1and ETR1-like genes (ETR2, EIN4, ERS1 and ERS2)

Chang et al. (1993), Wilkinson et al. (1995), Hua et al. (1995, 1998), Hua and Meyerowitz (1998), Sakai et al. (1998)

Lycopersicon esculentum

NR gene, LeETR1, LeETR2, LeETR4 and LeETR5

Lashbrook et al. (1995), Tieman and Klee (1999)

Rumex palustris

RP-ERS1

Vriezen et al. (1997)

Cucumis melo

Cm-ETR1 and Cm-ERS1

Sato-Nara et al. (1997, 1999)

Passiflora edulis

PE-ETR1 and PE-ERS1

Mita et al. (1998)

Rosa hybrida

RhETR1, RhETR2, RhETR3 and RhETR5

Müller et al. (2000a, b), Ma et al. (2006)

Dianthus caryophyllus

DcERS1, DcERS2 and DcETR1

Shibuya et al. (2002)

Delphinium

DlERS1type1 and DlERS1type2, Dl-ERS1-3 and Dl-ERS2

Kuroda et al. (2003, 2004), Tanase and Ichimura (2006)

Chrysanthemum

DgERS1

Narumi et al. (2005)

Oncidium

OgERS1

Huang et al. (2007)

Paeonia suffruticosa

PsETR1-1

Zhou et al. (2010)

The expression pattern of various ETR1 genes from different flower systems has revealed a differential expression as is evidenced by the higher expression of RhETR1 in long-lasting miniature rose cultivar and that of RhETR3 in short-lasting one, the constitutive expression of Rh-ETR5 (from cut roses) and RhETR2 (from miniature roses) throughout flower development (Müller et al. 2000a, b, 2001; Ma et al. 2006; Tan et al. 2006) and by the higher expression of Dg-ERS1 in petals of ethylene-sensitive chrysanthemum flowers (Narumi et al. 2005). Moreover, the ETR genes have been reported to show temporal regulation. A classical example of temporal regulation is provided by the carnation ETR genes (Dc-ERS1, Dc-ERS2 and Dc-ETR1) of which Dc-ERS2 has been found to be expressed at pre-opening stage while Dc-ETR1 exhibited constitutive expression during senescence and that Dc-ERS1 has not been detected throughout senescence (Shibuya et al. 2002). Similarly, the cDNAs (Dl-ERS1-3 and Dl-ERS2) from Delphinium flowers have been found to exhibit constitutive levels during flower senescence while as the Dl-ERS1 genes [Dl-ERS1 (Delphinium little-strain ERS1) type-1 and Dl-ERS1 type-2] have been shown to have increased expression prior to flower senescence following a decline thereafter (Kuroda et al. 2003; Tanase and Ichimura 2006). Likewise, the cDNA (OgERS1; phylogenetically related to ETRs from monocots) from Oncidium has been found to be abundantly expressed in roots and flower buds and to a lesser extent in pseudobulbs, leaves, and fully opened flowers (Huang et al. 2007). Similar studies in tree peony have also revealed the constitutive expression of Ps-ETR1-1 as it has been found to remain at a constant level throughout different opening stages (Zhou et al. 2010). As far as the effect of exogenous ethylene on the expression levels of ethylene receptor genes is concerned, it has been found to induce the expression of RhETR1, RhETR2, RhETR3, DlERS1-3 and DlERS2 on one hand and substantially inhibit the levels of Ps-ETR1-1 mRNA on the other hand. Moreover, the expression levels of Rh-ETR5, Dc-ERS2 and Dc-ETR1 have been found to be ethylene independent. It has been speculated that the exogenous ethylene-independent expression pattern might result from the lower amount of ethylene produced during natural flower senescence than that of exogenous ethylene and that abscission of florets in Delphinium is caused by the elevated levels of ethylene receptor (ERS1), influenced by exogenous ethylene. Moreover in tree peony, there exists an inverse relationship between the level of ETRs and the sensitivity to ethylene, and the reduction in the amount of ethylene receptor proteins have been found to increase ethylene sensitivity of plant tissues. Therefore, the decrease in the level of Ps-ETR1-1 mRNA in petals of ethylene-treated flowers has been suggested to increase the sensitivity of the petals to ethylene and hence accelerate their senescence (Shibuya et al. 2002; Kuroda et al. 2003, 2004; Ma et al. 2006; Tan et al. 2006).

In conclusion, it can be stated that the perception of ethylene during flower senescence is mediated by ethylene receptor genes (ETRs) which have been found to encode transmembrane ER proteins with similarity to bacterial two-component histidine kinase. A number of ETR genes have been identified and characterized from various flower systems. The ETR1 gene from Arabidopsis has been reported to have hydrophobic regions capable of reversibly binding to ethylene with the involvement of copper ions associated with the domain. It has been postulated that RAN1 delivers copper ion to ETR1. The differential expression of various ETRs have been found to be associated with varying longevity in miniature potted roses with the long-lasting cultivar expressing ETR1. From the available data, it may be speculated that there exists an inverse relationship between the level of ETRs and the sensitivity to ethylene in tree peony, but in Delphinium, it has been reported that abscission of florets is caused by elevated levels of ethylene receptor (ERS1) and that too influenced by exogenous ethylene.

Genes involved in ethylene signaling

Using molecular genetic approach, genes related to the ethylene signaling pathway have been isolated and characterized from a number of plants particularly in Arabidopsis, where the ethylene signaling pathway has been well characterized (Guzman and Ecker 1990; Kieber et al. 1993; Roman et al. 1995; Chao et al. 1997; Alonso et al. 1999). Perception of ethylene is brought about by a family of ETRs that in turn regulates the activity of CTR1 (a negative regulator of the ethylene response pathway) whose protein sequence have been reported to share similarity to the Raf family of serine/threonine protein kinase thereby suggesting that it (CTR1) might act via Mitogen-activated protein (MAP) kinase cascade, since MAPKs have been have been implicated in coordinating stress responses, probably as the key factors in the PCD signal transduction pathway (Kieber et al. 1993; Mizoguchi et al. 1996; Waki et al. 2001). In Delphinium, the DlCTR1, encoding a polypeptide of 800 amino acids containing the expected serine/threonine kinase domain, the consensus ATP-binding site, and the serine/threonine kinase catalytic site has also been characterized (Kuroda et al. 2004). This is also confirmed by the analyses of two genes In29 and In42 (from senescing Ipomoea nil petals) encoding leucine-rich repeat transmembrane receptor protein kinase and a 14-3-3 protein kinase, respectively. The former has been implicated to play a role in signal transduction while the latter has been reported to play a role in processes such as progression through cell cycle, initiation and maintenance of DNA damage checkpoints, and prevention of apoptosis control in humans (Wilker and Yaffe 2004; Yamada et al. (2007). Hua and Meyerowitz (1998) have reported that the ETRs positively regulate CTR1 in the absence of ethylene, and that ethylene binding cancels this interaction. In the absence of ethylene, therefore, an active form of CTR1 inhibits downstream components and ethylene responses. In the presence of ethylene, CTR1 is inactive and then downstream components are activated and ethylene responses occur. LeCTR2 (TCTR2) that encodes an AtCTR1-like kinase has been found to interact selectively with a subset of ETRs at the N-terminus while the C-terminus possesses kinase activity (Lin et al. 2008). It has been reported that ETRs are regulated at both the transcriptional and post-transcriptional levels while as CTR1 is regulated mainly at the post-transcriptional level through association or dissociation with ETRs in the endoplasmic reticulum (Gao et al. 2003; Chen et al. 2005). CTR1 genes have been identified and isolated from various plant systems as listed in Table 7. The expression analyses of these genes have also revealed their differential expression. Some of them have been reported to be expressed constitutively (LeCTR2, RhCTR2) while others (LeCTR1, RhCTR1) have been found to be upregulated during fruit ripening, flower opening, flower senescence and defense responses (Zegzouti et al. 1999; Alexander and Grierson 2002; Leclercq et al. 2002; Lin et al. 2008; Hajizadeh et al. 2011b). Similarly a homolog of CTR1 (Cup-CTR1) from Cucurbita pepo has been found to be upregulated in male flowers only (Manzano et al. 2008).
Table 7

Genes involved in ethylene signaling

Source

Genes/transcripts/cDNAs isolated

References

Arabidopsis

CTR1

Kieber et al. (1993)

At-ERFs

Nakano et al. (2006)

Lycopersicon esculentum

LeCTR1-LeCTR4

Lin et al. (1998)

LeEIL1

Tieman et al. (2001)

Delphinium

CTR1

Kuroda et al. (2004)

Petunia hybrida

Ph-EIL1

Shibuya et al. (2004)

PhERF1-PhERF13

Liu et al. (2011)

Ipomoea nil

In29 and In42

Yamada et al. (2007)

Cucurbita pepo

Cup-CTR1

Manzano et al. (2008)

Nicotiana sylvestris

Ns-EIL1

Yang et al. (2008)

Paeonia suffruticosa

Ps-EIN3-1

Zhou et al. (2010)

Rosa hybrida

RhCTR1 and RhCTR2

Hajizadeh et al. (2011b)

Dianthus caryophyllus

DCEIN2

Fu et al. (2011a)

DCEBF1

Fu et al. (2011b)

DcEIN3

Hoeberichts et al. (2003)

Dc-EILs

Waki et al. (2001), Iordachescu and Verlinden (2005)

Citrus

Cit ERF

Yang et al. (2011)

Longan fruit

DlHD2, DlERF1 and DlERF2

Kuang et al. (2012)

Based on double-mutant analysis, it is proposed that CTR1 acts at or downstream from ETR1, ERS1 and EIN4, and that EIN2, EIN3, EIN5, EIN6 and EIN7 act after CTR1 (Hua et al. 1995; Roman et al. 1995). Chen et al. (2005) has reviewed that CTR1 passes the signal to EIN2 (an integral membrane protein that acts as a positive regulator of ethylene pathway) through a series of MAPK cascades, and then to EIN3/EILs (transcriptional factors) that trigger the expression of downstream target genes such as ERFs. However, it has been recently demonstrated that CTR1 interacts and directly phosphorylates the cytosolic C-terminal domain of EIN2 in Arabidopsis (Li and Guo 2007; Ju et al. 2012). Although overexpression of the C-terminus of EIN2 (an ER-localized membrane protein) has been reported to result in constitutive induction of a subset of ethylene responses and genes, it has been found to be inefficient in restoring ethylene sensitivity to an ein2 null mutant (Alonso et al. 1999; Bisson et al. 2009). The regulation of EIN2 has been found to be brought about by two F-box proteins—ETP1 and ETP2 (EIN2-TARGETING PROTEIN) that negatively regulate ethylene signaling as the presence of ethylene downregulates both ETP1 and ETP2 (which otherwise degrade EIN2 in presence of ethylene) leading to accumulation of EIN2 and consequently an ethylene response (Qiao et al. 2009). About 700 F-box genes have been reported in Arabidopsis which are known to mediate proteolysis via ubiquitin-mediated proteasomal degradation, e.g., ORE9 required for initiation of Arabidopsis leaf senescence (Woo et al. 2001; Vierstra 2003). Recent studies in senescing carnation flowers have led to the identification of ethylene-dependent DCEIN2 (3,828 bp ORF encoding 139.5 kDa protein of 1275 amino acids) encoding protein-containing 12 putative transmembrane domains close to the N-terminus similar to the Arabidopsis EIN2, Petunia PhEIN2, and tomato SIEIN2 protein (Alonso et al. 1999; Fu et al. 2011a). Ethylene signaling downstream of EIN2 has been found to be mediated by EIN3 or EIN3-like EIL proteins (plant-specific transcription factors: Chao et al. 1997; Solano et al. 1998) that are regulated by two F-box proteins EBF1 and EBF2 (EIN3-binding F-box proteins) in a similar manner as EIN2 regulation by ETP1 and ETP2 (Guo and Ecker 2003, 2004; Bishopp et al. 2006). The expression of EBF2 has been found to be transcriptionally induced by EIN3 that directly binds to the promoter of EBF2, thereby allowing a negative feedback regulation to desensitize ethylene signaling and that EIN5, a 5′–3′ exoribonuclease, is most likely involved in moderating EBF1 and EBF2 transcripts (Gagne et al. 2004; Olmendo et al. 2006; Konishi and Yanagisawa 2008). Recently, a carnation cDNA (DCEBF1; 1,878 bp) encoding EBF-like protein has been isolated whose expression has been reported to be enhanced by endogenous/exogenous ethylene, and inhibited by STS in petals and ovaries (Fu et al. 2011b). EIN3 or EIN3-like proteins (EIL1, EIL2, EIL3, EIL4 and EIL5; nuclear-localized transcription factors) have been found to be upregulated during senescence (Waki et al. 2001; Alonso et al. 2003; Hoeberichts et al. 2003; Yanagisawa et al. 2003; Shibuya et al. 2004; Iordachescu and Verlinden 2005; Zhou et al. 2010). As far as structural aspect of ArabidopsisEIN3 protein is concerned, it has been found to harbor a highly acidic domain at N-terminus, five small clusters of basic amino acids throughout the EIN3 polypeptide, a proline rich domain, and an asparagine-rich domain at the C-terminus (Chao et al. 1997). Moreover, the Ps-EIN3-1 (from tree peony) has been reported to be strongly inhibited by ethylene and that decrease has been attributed to the activation of some defense mechanisms, thereby decreasing the tissue sensitivity to ethylene (Lorenzo et al. 2003; Zhou et al. 2010). In carnation, the upregulation of ACC synthase and ACC oxidase genes has been linked to the upregulation of EIL genes and it has been suggested that a master-switch controlling the coordinated upregulation of numerous ethylene responsive genes is involved in the senescence of carnation flowers, of which Dc-EIL3 might be part of. It has also been speculated that endogenous levels of soluble sugars in carnation act as a regulator of flower senescence by influencing Dc-EIL3 gene expression (Hoeberichts et al. 2007). Tieman et al. (2001) have demonstrated that reduced EIL expression in tomato (LeEIL1) affects ethylene responses, including leaf epinasty, flower abscission, flower senescence and fruit ripening. However, the expression of EIN3-like gene (EIL1) in Nicotiana sylvestris plants has not been found to consistently alter the progression of senescence (Yang et al. 2008). Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Recently, it has been reported that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation (An et al. 2010).

EIN3 or EILs have been found to induce the expression of other transcription factors, including the ERFs (ethylene responsive factors formerly known as ethylene-responsive element binding protein; EREBP) and EDFs (ethylene-responsive DNA binding factors) (Ohme-Takagi and Shinshi 1995; Suzuki et al. 1998; Li and Guo 2007), which is evident by the presence of ethylene responsive elements (EREs) in some senescence-related genes (SR5, SR9 and SR12) and related transcription factors (Hunter and Reid 2001; Verlinden et al. 2002). ERFs are plant-specific AP2/EREBP-type transcription factors, characterized by the presence of a highly conserved DNA-binding domain (the ERF domain consisting of 58 or 59 amino acids) and regulate gene expression by binding specifically to the 11 bp GCC box of the ethylene responsive element of senescence-related genes (Ohme-Takagi and Shinshi 1995; Hao et al. 1998; Riechmann and Meyerowitz 1998; Yang et al. 2011). A number of ERF genes have been identified (as listed in Table 7) and classified into small groups on the basis of structural similarities, e.g., 12 groups (group I-X, VI-L and Xb-L) in Arabidopsis (Nakano et al. 2006). Similarly, Liu et al. (2011) has also characterized and classified the 13 ERFs from Petunia (PhERF1-PhERF13). Of the 13 ERFs, PhERF2 and PhERF3 have been shown to be associated with flower senescence. Yang et al. (2011) has identified a novel transcription factor (Cit ERF) in ERF family which has been suggested to play a variety of roles in some biological processes particularly fruit ripening and in enhancing different stress tolerances. It has been suggested that histone deacetylation plays an important role in epigenetic control of gene expression, e.g., HD2, a plant-specific histone deacetylase is able to mediate transcriptional repression in many biological processes. In longan fruit senescence, one histone deacetylase 2-like gene, DlHD2, and two ethylene-responsive factor-like genes, DlERF1 and DlERF2, have been cloned and characterized. The application of nitric oxide has been found to delay fruit senescence (by enhancing the expression of DlHD2 and suppressing the expression of DlERF1 and DlERF2) indicating that a possible interaction between DlHD2 and DlERFs in regulating longan fruit senescence. The direct interaction between DlHD2 and DlERF1 suggests that DlHD2 might act with DlERF1 to regulate gene expression involved in longan fruit senescence (Kuang et al. 2012).

In conclusion, the ethylene signaling pathway has been fully elucidated in Arabidopsis but the accumulated data are to be fit into a more generalized model, so that it could be extended to the studies related to flower senescence. Although many studies involving identification, characterization and isolation of genes related to ethylene signaling have been made in various flower systems, a coherent picture is still not available that helps in understanding the proper execution and advancement of flower senescence mediated by ethylene. From the above discussion, it, however, becomes evident that ethylene signaling through ETR1 involves the inactivation of CTR1, a negative regulator of ethylene response pathway regulated mainly at the post-transcriptional level, through MAPK cascade. Inactivation of CTR1 activity has been found to activate downstream components (EIN2, EIN3/EILs, EIN5, EIN6, and EIN7) for the ethylene responses to occur. CTR1 inactivation has been found to directly phosphorylate or indirectly activate EIN2 through MAPK cascade whose function is in turn modulated by interaction with two F-box proteins (ETP1 and ETP2). Constitutive expression of EIN2 leads to activation of EIN3/EILs which reach the adequate levels and attach to promoters allowing the expression of ethylene responsive genes. The function of EIN3 or EILs is modulated by two F-box proteins (EBF1 and EBF2) which in turn are regulated by EIN5 (an exoribonuclease) to bring out the ethylene response. Thus, perception of ethylene or its signaling involves an extensive cross-talk between various genes or their products (Fig. 1).
Fig. 1

Ethylene signaling in plants: components and signal transduction. Here ethylene is perceived by a set of ethylene receptors (ETRs) that transduces the signal to various downstream components for the regulation of gene expression. Abbreviations: ETR ethylene receptor, CTR1 constitutive triple response, MAPK mitogen-activated protein kinase, ETP EIN2-targeting protein, EBF EIN3-binding F-box protein, EIL EIN3-like proteins, ERF ethylene response factors, EDF ethylene-responsive DNA-binding factors, SAG senescence-associated gene

Future perspectives

The molecular and genomic revolutions have undoubtedly led to a revolution in the research being conducted in the field of plant senescence in general and flower senescence in particular. It is through molecular, mutational or transcriptomic approach that we have isolated and characterized numerous senescence-associated genes (genes coding for proteases, nucleases, transcription factors, ethylene biosynthesis and signaling, etc.). Moreover, the use of microarray technology, comprehensive transcriptomic sequencing projects and transgenic approaches will be of great help in bringing valuable information about the putative genes involved in flower senescence. This will provide us with a range of genes putatively involved in the implicated pathways leading to flower aging that may be blocked or induced to modify the progression of senescence. Although most of the genes or their corresponding proteins have been elucidated in detail; however, we are still far from developing an integrated picture of the executive mechanisms that control various aspects of senescence at molecular level that hinders our progress in addressing many open challenges regarding it. Thus, the major challenge for the researchers is to efficiently integrate the available information scattered in various flower systems into a flower senescence database (FSD) as has been developed for leaf senescence using bioinformatics approach. Moreover, the information gathered so far is based on studies conducted in a few model species like Arabidopsis, Petunia,Mirabilis, Rosa, Alstroemeria, etc.; therefore, another challenge in understanding the complex senescence regulation pathways is to extend this understanding to other species particularly the commercial ones (ornamentals) so that their vase life could be extended by exploiting the control points regulating flower senescence.

Notes

Acknowledgments

The authors thank Head of the department, Prof. I. A. Nawchoo and Ex-head Prof. Z. A. Reshi for cordial support.

References

  1. Ahmadi N, Mibus H, Serek M (2008) Isolation of an ethylene-induced putative nucleotide laccase in miniature roses (Rosa hybrida L.). J Plant Growth Regul 27:320–330Google Scholar
  2. Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055PubMedGoogle Scholar
  3. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152PubMedGoogle Scholar
  4. Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, Ausubel FM, Ecker JR (2003) Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100(5):2992–2997Google Scholar
  5. An F, Zhao Q, Ji Y, Li W, Jiang Z, Yu X, Zhang C, Han Y, He W, Liu Y, Zhang S, Ecker JR, Guo H (2010) Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell 22:2384–2401Google Scholar
  6. Andersson A, Keskitalo J, Sjödin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24PubMedCentralPubMedGoogle Scholar
  7. Aravind L, Ponting CP (1997) The GAF-domain- an evolutionary link between diverse phototransduction proteins. Trends Biochem Sci 22:458–459PubMedGoogle Scholar
  8. Azeez A, Sane AP, Tripathi SK, Bhatnagar D, Nath P (2010) The gladiolus GgEXPA1 is a GA-responsive alpha-expansin gene expressed ubiquitously during expansion of all floral tissues and leaves but repressed during organ senescence. Postharvest Biol Technol 58:48–56Google Scholar
  9. Balazadeh S, Riaño-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:136–147PubMedGoogle Scholar
  10. Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor M-I, Köhler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62:250–264PubMedGoogle Scholar
  11. Bishopp A, Mähönen AP, Helariutta Y (2006) Signs of change: hormone receptors that regulate plant development. Development 133:1857–1869PubMedGoogle Scholar
  12. Bisson MM, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6PubMedGoogle Scholar
  13. Bleecker AB, Schaller GE (1996) The mechanism of ethylene perception in plants. Plant Physiol 111:650–660Google Scholar
  14. Bleecker AB, Esch JJ, Hall AE, Rodriguez FI, Binder BM (1998) The ethylene-receptor family from Arabidopsis: structure and function. Philosoph Trans Royal Soc Lond B Biol Sci 353:1405–1412Google Scholar
  15. Breeze E, Wagstaff C, Harrison E, Bramke I, Rogers H, Stead A, Thomas B, Buchanan-Wollaston V (2004) Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals. Plant Biotechnol J 2:155–168PubMedGoogle Scholar
  16. Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585PubMedGoogle Scholar
  17. Bui AQ, ÒNeill SD (1998) Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol 116:419–428Google Scholar
  18. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene response gene ETR1-similarity of product to 2-component regulators. Science 262:539–544PubMedGoogle Scholar
  19. Channelière S, Rivière S, Scalliet G, Szecsi J, Jullien F, Dolle C, Vergne P, Dumas C, Bendahmane M, Hugueney P, Cock JM (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38Google Scholar
  20. Chao Q, Rothenburg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144PubMedGoogle Scholar
  21. Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915PubMedGoogle Scholar
  22. Chen MK, Lee PF, Yang CH (2011) Delay of flower senescence and abscission in Arabidopsis transformed with a FOREVER YOUNG FLOWER homolog from Oncidium orchid. Plant Signal Behav 6:1841–1843PubMedCentralPubMedGoogle Scholar
  23. Cosgrove DJ (1999a) Enzymes and other agents that enhance cell wall extensibility. Ann Rev Plant Physiol Plant Mol Biol 50:391–417Google Scholar
  24. Cosgrove DJ (1999b) Cell wall loosening by expansins. Plant Physiol 118:333–339Google Scholar
  25. Cosgrove DJ (2000a) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78PubMedGoogle Scholar
  26. Cosgrove DJ (2000b) Loosening of plant cell walls by expansins. Nature 407:321–326PubMedGoogle Scholar
  27. Coupe SA, Watson LM, Ryan DJ, Pinkney TT, Eason JR (2004) Molecular analysis of programmed cell death during senescence in Arabidopsis thaliana and Brassica oleracea: cloning broccoli LSD1, Bax inhibitor and serine palmitoyltransferase homologues. J Exp Bot 55:59–68PubMedGoogle Scholar
  28. Eason JR (2006) Molecular an genetic aspects of flower senescence. Stewart Postharvest Rev 2:1–7Google Scholar
  29. Eason JR, Ryan DJ, Pinkney TT, ÒDonoghue EM (2002) Programmed cell death during flower senescence: isolation and characterization of cysteine proteinases from Sandersonia aurantiaca. Funct Plant Biol 29:1055–1064Google Scholar
  30. Elanchezhian R, Srivastava GC (2001) Physiological responses of chrysanthemum petals during senescence. Biol Plant 44:411–415Google Scholar
  31. Fang SC, Fernandez DE (2002) Effect of regulated overexpression of the MADS domain factor AGL15 on flower senescence and fruit maturation. Plant Physiol 130:78–89PubMedCentralPubMedGoogle Scholar
  32. Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A (2008) Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J Exp Bot 59:3247–3258PubMedGoogle Scholar
  33. Farage-Barhom S, Burd S, Sonega L, Mett A, Belausov E, Gidoni D, Lers A (2011) Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei. Mol Plant 4:1062–1073PubMedGoogle Scholar
  34. Fernández-Otero C, Matilla AJ, Rasori A, Ramina A, Bonghi C (2006) Regulation of ethylene biosynthesis in reproductive organs of damson plum (Prunus domestica L. Subsp. Syriaca). Plant Sci 171:74–83Google Scholar
  35. Fu Z, Wang H, Liu J, Liu J, Wang J, Zhang Z, Yu Y (2011a) Cloning and characterization of a DCEIN2 gene responsive to ethylene and sucrose in cut flower carnation. Plant cell Tissue Organ Culture 105:447–455Google Scholar
  36. Fu ZD, Wang HN, Liu JX, Zeng HX, Zhang J, Kuang XC, Yuyi X (2011b) Molecular cloning and characterization of carnation EBF1 gene during flower senescence and upon ethylene exposure and sugar. Agric Sci China 12:1872–1880Google Scholar
  37. Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo SD, Yanagisawa S, Vierstra RD (2004) Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Nat Acad Sci USA 101:6803–6808PubMedGoogle Scholar
  38. Gao Z, Chen YF, Randlett MD, Zhao XC, Findell JL, Kieber JJ, Schalle GE (2003) Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725–34732PubMedGoogle Scholar
  39. Goujon T, Minic Z, El Amrani A, Lerouxel O, Aletti E, Lapierre C, Joseleau JP, Jouanin L (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J 33:677–690PubMedGoogle Scholar
  40. Guerrero C, de la Calle M, Reid MS, Valpuesta V (1998) Analysis of the expression of two thiol protease genes from day lily (Hemerocallis) during flower senescence. Plant Mol Biol 36:565–571Google Scholar
  41. Guo H, Ecker JR (2003) Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677PubMedGoogle Scholar
  42. Guo H, Ecker JR (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40–49PubMedGoogle Scholar
  43. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612PubMedGoogle Scholar
  44. Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549Google Scholar
  45. Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523PubMedCentralPubMedGoogle Scholar
  46. Hajizadeh H, Razavi K, Mostofi Y, Cacco G, Mousavi A, Zamani Z, Stevanato P (2011a) Expression of genes encoding protein kinases during flower opening in two cut rose cultivars with different longevity. Iran J Biotechnol 9:230–233Google Scholar
  47. Hajizadeh H, Razavi K, Mostofi Y, Mousavi A, Cacco G, Zamani Z, Stevanato P (2011b) Identification and characterization of genes differentially displayed in Rosa hybrida petals during flower senescence. Scientia Hortic 128:320–324Google Scholar
  48. Hao D, Ohme-Takagi M, Sarai A (1998) Unique Mode of GCC Box recognition by the DNA-binding domain of Ethylene-responsive element-binding Factor (ERF Domain) in Plant. J Biol Chem 273:26857–26861PubMedGoogle Scholar
  49. Harada T, Murakoshi Y, Toril Y, Tanase K, Onazaki T, Morita S, Masumura T, Sato S (2011a) Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus. Plant Cell Rep 30:519–527PubMedGoogle Scholar
  50. Harada T, Toril Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S (2011b) Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. J Exp Bot 62:815–823PubMedGoogle Scholar
  51. Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911PubMedGoogle Scholar
  52. Have AT, Woltering EJ (1997) Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol Biol 34:89–97PubMedGoogle Scholar
  53. He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716PubMedCentralPubMedGoogle Scholar
  54. Henskens JAM, Rouwendal GJA, Have T, Woltering EJ (1994) Molecular cloning of two different ACC synthase PCR fragments in carnation flowers and organ-specific expression of the corresponding genes. Plant Mol Biol 26:453–458PubMedGoogle Scholar
  55. Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso J, Dailey WP, Dances A, Ecker JR (1999) Response-to-antagonist1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–393PubMedGoogle Scholar
  56. Hoeberichts FA, van Doorn WG, van Wordragen M (2003) cDNA microarray analysis of carnation petal senescence. In: Vendrell et al (eds) Biology and biotechnology of the plant hormone ethylene III. IOS Press, Amsterdam, pp 345–350Google Scholar
  57. Hoeberichts FA, de Jong AJ, Woltering EJ (2005) Apoptotic-like cell death marks the early stages of gypsophila (Gypsophila paniculata) petal senescence. Postharvest Biol Technol 35:229–236Google Scholar
  58. Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF (2007) Sucrose prevents upregulation of senescence-associated genes in carnation petals. J Exp Bot 58:2873–2885PubMedGoogle Scholar
  59. Hong Y, Wang TW, Hudak KA, Schada F, Froese CD, Thompson JE (2000) An ethylene-induced cDNA encoding like a lipase expressed at the onset of senescence. Proc Nat Acad Sci USA 97:8717–8722PubMedGoogle Scholar
  60. Hu J, Aguirre M, Peto C, Alonso J, Ecker J, Chory J (2002) A role for peroxisomes in photomorphogenesis and development of Arabidopsis. Science 297:405–409PubMedGoogle Scholar
  61. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271PubMedGoogle Scholar
  62. Hua J, Chang C, Sun Q, Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714PubMedGoogle Scholar
  63. Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332PubMedCentralPubMedGoogle Scholar
  64. Huang WF, Huang PL, Do YY (2007) Ethylene receptor transcript accumulation patterns during flower senescence in Oncidium ‘Gower Ramsey’ as affected by exogenous ethylene and pollinia cap dislodgement. Postharvest Biol Technol 44:87–94Google Scholar
  65. Hückelhoven R (2004) BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 9:299–307PubMedGoogle Scholar
  66. Hunter DA, Reid MS (2001) Senescence-associated gene expressions in Narcissus ‘Dutch Master’. Acta Hortic 553:341–344Google Scholar
  67. Hunter DA, Steele BC, Reid MS (2002) Identification of genes associated with perianth senescence in daffodil (Narcissus pseudonarcissus L. ‘Dutch Master’). Plant Sci 163:13–21Google Scholar
  68. Iordachescu M, Verlinden S (2005) Transcriptional regulation of three EIN3-like genes of carnation (Dianthus caryophyllus L. cv. Improved White Sim) during flower development and upon wounding, pollination, and ethylene exposure. J Exp Bot 56:2011–2018PubMedGoogle Scholar
  69. Iordachescu M, Bowman H, Sasaki K, Imai R, Satoh S, Verlinden S (2009) Subcellular localization and changes in mRNA abundance of CEBP, a nuclear-encoded chloroplast protein, during flower development and senescence. J Plant Biol 52:365–373Google Scholar
  70. Ishikawa T, Watanabe N, Nagano M, Yamada MK, Lam E (2011) Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death Differ 18:1271–1278PubMedGoogle Scholar
  71. Ito J, Fukuda H (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201–3211PubMedCentralPubMedGoogle Scholar
  72. Itzhaki H, Maxson JM, Woodson WR (1994) An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GST1) gene. Proc Nat Acad Sci USA 9:8925–8929Google Scholar
  73. Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabinogalactan proteins of arabidopsis: a multigene family of putative cell adhesion molecules. Plant Physiol 133:1911–1925PubMedCentralPubMedGoogle Scholar
  74. Jones ML (2003) Ethylene biosynthetic genes are differentially regulated by ethylene and ACC in carnation styles. Plant Growth Regul 40:129–138Google Scholar
  75. Jones ML, Larsen PB, Woodson WR (1995) Ethylene-regulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Mol Biol 28:505–512PubMedGoogle Scholar
  76. Jones ML, Chaffin GS, Eason JR, Clark DG (2005) Ethylene-sensitivity regulates proteolytic activity and cysteine protease gene expression in Petunia corollas. J Exp Bot 56:2733–2744PubMedGoogle Scholar
  77. Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. PNAS USA 109:19486–19491PubMedGoogle Scholar
  78. Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090PubMedCentralPubMedGoogle Scholar
  79. Kehoe DM, Grossman ER (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273:1409–1412PubMedGoogle Scholar
  80. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441PubMedGoogle Scholar
  81. Klee HJ (2002) Control of ethylene-mediated processes in tomato at the level of receptors. J Exp Bot 53:2057–2063PubMedGoogle Scholar
  82. Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355PubMedGoogle Scholar
  83. Konishi M, Yanagisawa S (2008) Ethylene signaling in Arabidopsis involves feedback regulation via the elaborate control of EBF2 expression by EIN3. Plant J 55:821–831PubMedGoogle Scholar
  84. Kosslak RM, Chamberlin MA, Palmer RG, Bowen BA (1997) Programmed cell death in the root cortex of soyabean root necrosis mutants. Plant J 11:729–745PubMedGoogle Scholar
  85. Kuang JF, Chen JY, Luo M, Wu KQ, Jiang YM, Lu WJ (2012) Histone deacetylase HD2 interacts with ERF1 and is involved in longan fruit senescence. J Exp Bot 63:441–454PubMedGoogle Scholar
  86. Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860PubMedGoogle Scholar
  87. Kuroda S, Hakata M, Hirose Y, Shiraishi M, Abe S (2003) Ethylene production and enhanced transcription of an ethylene receptor gene, ERS1, in Delphinium during abscission of florets. Plant Physiol Biochem 41:812–820Google Scholar
  88. Kuroda S, Hirose Y, Shiraishi M, Davies E, Abe S (2004) Co-expression of an ethylene receptor gene, ERS1, and ethylene signaling regulator gene, CTR1 in Delphinium during abscission of florets. Plant Physiol Biochem 42:745–751PubMedGoogle Scholar
  89. Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853PubMedGoogle Scholar
  90. Langston BJ, Bai S, Jones ML (2005) Increases in DNA fragmentation and induction of a senescence-specific nuclease are delayed during corolla senescence in ethylene-insensitive (etr1-1) transgenic petunias. J Exp Bot 56:15–23PubMedGoogle Scholar
  91. Lashbrook CC, Tieman DM, Klee HJ (1995) Differential regulation of the tomato ETR gene family throughout plant development. Plant J 15:243–252Google Scholar
  92. Lawton K, Raghothama KG, Goldsbrough PB, Woodson WR (1990) Regulation of senescence-related gene expression in carnation flower petals by ethylene. Plant Physiol 93:1370–1375PubMedCentralPubMedGoogle Scholar
  93. Leclercq J, Adams-Phillips LC, Zegzouti H, Jones B, Latchè A, Giovannoni JJ, Pech JC, Bouzayen M (2002) LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato. Plant Physiol 130:1132–1142PubMedCentralPubMedGoogle Scholar
  94. Lee YH, Chun JY (1998) A new homeodomain-leucine zipper gene from Arabidopsis thaliana induced by water stress and abscisic acid treatment. Plant Mol Biol 37:377–384PubMedGoogle Scholar
  95. Li H, Guo H (2007) Molecular basis of the ethylene signaling and response pathway in Arabidopsis. Plant Growth Regul 26:106–117Google Scholar
  96. Li Y, Sugiura M (1990) Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J 9:3059–3066PubMedGoogle Scholar
  97. Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628PubMedGoogle Scholar
  98. Lin Z, Hackett RM, Payton P, Grierson D (1998) A tomato sequence (AJ005077) encoding an Arabidopsis CTR1 homologue. Plant Physiol 117:1126Google Scholar
  99. Lin Z, Alexander L, Hackett R, Grierson D (2008) LeCTR2, a CTR1-like protein kinase from tomato, plays a role in ethylene signalling, development and defence. Plant J 54:1083–1093PubMedCentralPubMedGoogle Scholar
  100. Liu J, Li J, Wang H, Fu Z, Liu J, Yu Y (2011) Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot 62:825–840PubMedGoogle Scholar
  101. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178PubMedCentralPubMedGoogle Scholar
  102. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM (1999) RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc National Acad Sci USA 96:11364–11369Google Scholar
  103. Ma N, Cai L, Lu WJ, Tan H, Gao JP (2005) Exogenous ethylene influences flower opening of cut roses (Rosa hybrida) by regulating the genes encoding ethylene biosynthesis enzymes. Scientia China C Life Sci 48:434–444Google Scholar
  104. Ma N, Tan H, Liu XH, Xue JQ, Li YH, Gao JP (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J Exp Bot 57:2763–2773PubMedGoogle Scholar
  105. Manzano S, Gómez P, Garrido D, Jamilena M (2008) Cloning and characterization of a CTR1-like gene in Cucurbita pepo. In: Pitrat M (eds) Proceedings of IX EUCARPIA Meeting, Avignon, pp 575–580Google Scholar
  106. Maxson JM, Woodson WR (1996) Cloning of a DNA-binding protein that interacts with the ethylene-responsive enhancer element of the carnation GST1 gene. Plant Mol Biol 31:751–759PubMedGoogle Scholar
  107. Mehta K, Hale TI, Christen P (1989) Evolutionary relationships among aminotransferases. Eur J Biochem 189:249–253Google Scholar
  108. Meyer RC, Goldsbrough PB, Woodson WR (1991) An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione-s-transferases. Plant Mol Biol 17:277–281PubMedGoogle Scholar
  109. Mita S, Kawamura S, Yamawaki K, Nakamura K, Hyodo H (1998) Differential expression of genes involved in the biosynthesis and perception of ethylene during ripening of passion fruit. Plant Cell Physiol 39:1209–1217PubMedGoogle Scholar
  110. Mizoguchi T, Irie K, Hirayama T, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Nat Acad Sci USA 93:765–769PubMedGoogle Scholar
  111. Molnar G, Bancos S, Nagy F, Szekeres M (2002) Characterisation of BRH1, a brassinosteroid-responsive RING-H2 gene from Arabidopsis thaliana. Planta 215:127–133PubMedGoogle Scholar
  112. Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL (1993) Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Nat Acad Sci USA 90:5939–5943PubMedGoogle Scholar
  113. Müller R, Stummann BM, Serek M (2000a) Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep 19:1232–1239Google Scholar
  114. Müller R, Lind-Iversen S, Stummann BM, Serek M (2000b) Expression of genes for ethylene-biosynthetic enzymes and an ethylene receptor in senescing flowers of miniature potted roses. J Hort Sci Biotechnol 75:12–18Google Scholar
  115. Müller R, Stummann BM, Sisler EC, Serek M (2001) Cultivar differences in regulation of ethylene production in miniature rose flowers (Rosa hybrida L.). Gartenbauw 1:34–38Google Scholar
  116. Müller R, Owen CA, Xu ZT, Welander M, Stummann BM (2002) Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223–1225PubMedGoogle Scholar
  117. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432PubMedCentralPubMedGoogle Scholar
  118. Narumi T, Kanno Y, Suzuki M, Kishimoto S, Ohmiya A, Satoh S (2005) Cloning of a cDNA encoding an ethylene receptor (DG-ERS1) from chrysanthemum and comparison of its mRNA level in ethylene-sensitive and -insensitive cultivars. Postharvest Biol Technol 36:21–30Google Scholar
  119. Narumi T, Sudo R, Satoh S (2006) Cloning and characterization of a cDNA encoding a putative nuclease related to petal senescence in carnation (Dianthus caryophyllus L.) flowers. J Jap Soc Hortic Sci 75:323–327Google Scholar
  120. Nodzon L, Xu W, Wang Y, Pi LY, Chakrabarty PK, Song WY (2004) The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. Plant J 40:996–1006PubMedGoogle Scholar
  121. Noh YS, Amasino RM (1999) Regulation of developmental senescence is conserved between Arabidopsis and Brassica napus. Plant Mol Biol 41:195–206PubMedGoogle Scholar
  122. Nooden J, Guiamet J, John I (1997) Senescence mechanisms. Physiol Plant 101:746–753Google Scholar
  123. O’Donoghue EM, Somerfield SD, Watson LM, Brummell DA, Hunter DA (2009) Galactose metabolism in cell walls of opening and senescing petunia petals. Planta 229:709–721PubMedGoogle Scholar
  124. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182PubMedCentralPubMedGoogle Scholar
  125. Olmendo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, Li H, An F, Guzman P, Ecker JR (2006) ETHYLENE-INSENSITIVE5 encodes a 5′-3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Nat Acad Sci USA 103:13286–13293Google Scholar
  126. Panavas T, Pikula A, Reid PD, Rubinstein B, Walker EL (1999) Identification of senescence-associated genes from day lily petals. Plant Mol Biol 40:237–248PubMedGoogle Scholar
  127. Park KY, Drory A, Woodson WR (1992) Molecular cloning of an 1-aminocyclopropane-1-carboxylate synthase from senescing carnation flower petals. Plant Mol Biol 18:377–386PubMedGoogle Scholar
  128. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signalling proteins. Annu Rev Genetics 26:71–112Google Scholar
  129. Perez-Amador MA, Abler ML, De Rocher EJ, Thompson DM, van Hoof A, LeBrasseur ND, Lers A, Green PJ (2000) Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol 122:169–179PubMedCentralPubMedGoogle Scholar
  130. Prasad ME, Stone SL (2010) Further analysis of XBAT32, an Arabidopsis RING E3 ligase, involved in ethylene biosynthesis. Plant Signal Behav 5:1425–1429PubMedCentralPubMedGoogle Scholar
  131. Price AM, Aros Orellana DF, Salleh FM, Stevens R, Acock R, Buchanan-Wollaston V, Stead AD, Rogers HJ (2008) A comparison of leaf and petal senescence in wall flower reveals common and distinct patterns of gene expression and physiology. Plant Physiol 147:1898–1912Google Scholar
  132. Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23:512–521PubMedGoogle Scholar
  133. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646PubMedGoogle Scholar
  134. Rodriguez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleecker AB (1999) A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science 283:996–998PubMedGoogle Scholar
  135. Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315PubMedGoogle Scholar
  136. Roman G, Lubarsky B, Kieber JJ, Rothenberg M, Ecker JR (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139:1393–1409PubMedGoogle Scholar
  137. Rubinstein B (2000) Regulation of cell death in flower petals. Plant Mol Biol 44:303–318PubMedGoogle Scholar
  138. Sakai H, Hua J, Chen QG, Chang C, Madrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Nat Acad Sci USA 95:5812–5817PubMedGoogle Scholar
  139. Sato-Nara K, Yuhashi K, Higashi K, Hosoya K, Kubota M, Ezura H (1997) Isolation and expression of a ETR1 homolog in melon (Cucumis melo L. reticulatus) seedlings. Abs. No. 840. In: 5th international congress of plant molecular biology, SingaporeGoogle Scholar
  140. Sato-Nara K, Yuhashi K, Higashi K, Hosoya K, Kubota M, Ezura H (1999) Stage-and tissue-specific expression of ethylene receptor homolog genes during fruit development in muskmelon. Plant Physiol 120:321–329PubMedCentralPubMedGoogle Scholar
  141. Schaller GE, Bleecker AB (1995) Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR gene. Science 270:12526–12530Google Scholar
  142. Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castorbean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 20:466–475Google Scholar
  143. Schmid M, Simpson DJ, Sarioglu H, Lottspeich F, Gietl C (2001) The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc Nat Acad Sci USA 98:5353–5358PubMedGoogle Scholar
  144. Schnell JD, Hicke L (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278:35857–35860PubMedGoogle Scholar
  145. Serrano M, Guzman P (2004) Isolation and gene expression analysis of Arabidopsis thaliana mutants with constitutive expression of ATL2, an early elicitor-response RING-H2 zinc-finger gene. Genetics 167:919–929PubMedGoogle Scholar
  146. Sessa G, Carabelli M, Ruberti I, Lucchetti S, Baima S, Morelli G (1994) Identification of distinct families of HD-Zip proteins in Arabidopsis thaliana. In: Puigdomenèch P, Coruzzi G (eds) Molecular-genetic analysis of plant development and metabolism. Springer, Berlin, pp 411–426Google Scholar
  147. Shahri W, Tahir I (2011) Flower senescence- strategies and some associated events. Bot Rev 77:152–184Google Scholar
  148. Shi H, Kim YS, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32PubMedCentralPubMedGoogle Scholar
  149. Shibuya K, Nagata M, Tanikawa N, Yoshioka T, Hashiba T, Satoh S (2002) Comparison of mRNA levels of three ethylene receptors in senescing flowers of carnation (Dianthus caryophyllus L.). J Exp Bot 53:399–406PubMedGoogle Scholar
  150. Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiol 136:2900–2912PubMedCentralPubMedGoogle Scholar
  151. Singh AP, Tripathi SK, Nath P, Sane AP (2011) Petal abscission in rose is associated with the differential expression of two-ethylene responsive xyloglucan endotransglucosylase/hydrolase genes, RbXTH1, and RbXTH2. J Exp Bot 62:5091–5103PubMedGoogle Scholar
  152. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcription cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714PubMedGoogle Scholar
  153. Song L, Wang Y, Lu W, Wu G, Jiang Y, Gao H (2007) Differential expressions of expansin and xyloglucan endotransglucosylase genes by adenosine triphosphate of cut carnation flowers during senescence. Int J Agric Res 2:945–951Google Scholar
  154. Spanu P, Grosskopf DG, Felix G, Boller T (1994) The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation. Plant Physiol 106:529–535PubMedCentralPubMedGoogle Scholar
  155. Stead AD (1992) Pollination-induced flower senescence: a review. Plant Growth Regul 11:13–20Google Scholar
  156. Stone S, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30PubMedCentralPubMedGoogle Scholar
  157. Suzuki K, Suzuki N, Ohme-Takagi M, Shinshi H (1998) Immediate early induction of mRNAs for ethylene-responsive transcription factors in tobacco leaf strips after cutting. Plant J 15:657–665Google Scholar
  158. Tan H, Liu XH, Ma N, Xue JQ, Lu WJ, Bai JH, Gao JP (2006) Ethylene-influenced flower opening and expression of genes encoding ETRs, CTRs, and EIN3 s in two cut rose cultivars. Postharvest Biol Technol 40:97–105Google Scholar
  159. Tanase K, Ichimura K (2006) Expression of ethylene receptors Dl-ERS-3 and Dl-ERS-2, and ethylene response during flower senescence in Delphinium. J Plant Physiol 163:1159–1166PubMedGoogle Scholar
  160. Tieman DM, Klee HJ (1999) Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol 120:165–172PubMedCentralPubMedGoogle Scholar
  161. Tieman DM, Ciardi JA, Taylor MG, Klee HJ (2001) Members of the tomato LeEILI gene family are functionally redundant and regulate ethylene responses throughout plant development. Plant J 26:47–58PubMedGoogle Scholar
  162. Tripathi SK, Tuteja N (2007) Integrated signaling in flower senescence-An overview. Plant signal behav 2:437–445PubMedCentralPubMedGoogle Scholar
  163. Tripathi SK, Singh AP, Sane AP, Nath P (2009) Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose. J Exp Bot 60:2035–2044PubMedGoogle Scholar
  164. Valpuesta V, Lange NE, Guerrero C, Reid MS (1995) Up-regulation of a cysteine protease accompanies the ethylene-insensitive senescence of day lily (Hemerocallis) flowers. Plant Mol Biol 28:575–582PubMedGoogle Scholar
  165. van Doorn WG (2001) Categories of petal senescence and abscission: a re-evaluation. Annu Bot 87:447–456Google Scholar
  166. van Doorn WG, Stead AD (1997) Abscission of flowers and floral parts. J Exp Bot 48:821–837Google Scholar
  167. van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59:453–480PubMedGoogle Scholar
  168. van Doorn WG, Balk PA, van Houwelingen AM, Hoeberichts FA, Hall RD, Vorst O, van der Schoot C, van Wordragen MF (2003) Gene expression during anthesis and senescence in Iris flowers. Plant Mol Biol 53:845–863PubMedGoogle Scholar
  169. van Hengel AJ, Roberts K (2003) AtAGP30, an arabinogalactan-protein in the cell walls of the primary root, plays a role in root regeneration and seed germination. Plant J 36:256–270PubMedGoogle Scholar
  170. Verlinden S, Boatright J, Woodson WR (2002) Changes in ethylene responsiveness of senescence-related genes during carnation flower development. Physiol Plant 116:503–511Google Scholar
  171. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8:135–142PubMedGoogle Scholar
  172. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus. Science 296:343–346PubMedGoogle Scholar
  173. Vriezen WH, van Rijn CPE, Voesenek LACJ, Marianai C (1997) A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J 11:1265–1271PubMedGoogle Scholar
  174. Wagner U, Edwards R, Dixon DP, Mauch F (2002) Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49:515–532PubMedGoogle Scholar
  175. Wagstaff C, Leverentz MK, Griffith G, Thomas B, Chanasut U, Stead AD, Rogers HJ (2002) Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals. J Exp Bot 53:233–240PubMedGoogle Scholar
  176. Wagstaff C, Malcom P, Arfan R, Leverentz MK, Griffith G, Thomas B, Stead AD, Rogers H (2003) Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence. New Phytol 160:49–59Google Scholar
  177. Wagstaff C, Bramke I, Breeze E, Thornber S, Harrison E, Thomas B, Buchanan-Wollaston V, Stead T, Rogers H (2010) A specific group of genes respond to cold dehydration stress in cut Alstroemeria flowers whereas ambient dehydration stress accelerates developmental senescence expression patterns. J Exp Bot 61:2905–2910PubMedGoogle Scholar
  178. Waki K, Shibuya K, Yoshida T, Hashiba T, Satoh S (2001) Cloning of a cDNA encoding EIN3-like protein (Dc-EIL1) and decrease in its mRNA level during senescence in carnation flower tissues. J Exp Bot 52:377–379PubMedGoogle Scholar
  179. Wang H, Woodson WR (1991) A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis. Plant Physiol 96:1000–1001PubMedCentralPubMedGoogle Scholar
  180. Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY (2006) Rice XA21 binding protein 3 is an ubiquitin ligase required for full Xa21-mediated disease resistance. Plant Cell 18:3635–3646PubMedCentralPubMedGoogle Scholar
  181. Watanabe N, Lam E (2009) Bax Inhibitor-1, a conserved cell death suppressor, is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. Int J Mol Sci 10:3149–3167PubMedCentralPubMedGoogle Scholar
  182. Wilker E, Yaffe MB (2004) 14-3-3 proteins-a focus on cancer and human disease. J Mol Cell Cardiol 3:633–642Google Scholar
  183. Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270:1807–1809PubMedGoogle Scholar
  184. Wilkinson JQ, Lanahan MB, Clark DG, Bleecker AB, Chang C, Meyerowitz EM, Klee HJ (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nature Biotechnol 15:444–447Google Scholar
  185. Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790PubMedCentralPubMedGoogle Scholar
  186. Woodson WR, Park KY, Drory A, Larsen PB, Wang H (1992) Expression of ethylene biosynthesis pathway transcripts in senescing carnation flowers. Plant Physiol 99:526–532PubMedCentralPubMedGoogle Scholar
  187. Wu X, Yu Y, Han L, Li C, Wang H, Zhong N, Yao Y, Xia G (2012) The tobacco BLADE-ON-PETIOLE2 gene mediates differentiation of the corolla abscission zone by controlling longitudinal cell expansion. Plant Physiol (doi:10.1104/pp.112.193482)
  188. Xu Y, Hanson MR (2000) Programmed cell death during pollination-induced senescence in Petunia. Plant Physiol 122:1323–1333PubMedCentralPubMedGoogle Scholar
  189. Xu X, Gookin T, Jiang C, Reid MS (2007a) Genes associated with opening and senescence of the ephemeral flowers of Mirabilis jalapa. J Exp Bot 58:2193–2201PubMedGoogle Scholar
  190. Xu X, Jiang CZ, Donnelly L, Reid MS (2007b) Functional analysis of a RING domain ankyrin repeat protein that is highly expressed during flower senescence. J Exp Bot 58:3623–3630PubMedGoogle Scholar
  191. Xue JQ, Li YH, Tan H, Yang F, Ma N, Gao JP (2008) Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene enhanced flower opening. J Exp Bot 59:2161–2169PubMedGoogle Scholar
  192. Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2007) Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers. Plant Cell Rep 26:823–835PubMedGoogle Scholar
  193. Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2009) Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant and Cell Physiol 50:610–625Google Scholar
  194. Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521–525PubMedGoogle Scholar
  195. Yang TF, Gonzalez-Carranza ZH, Maunders MJ, Roberts JA (2008) Ethylene and the regulation of senescence processes in transgenic Nicotiana sylvestris plants. Ann Bot 10:301–310Google Scholar
  196. Yang CY, Hsu FC, Li JP, Wang NN, Shih MC (2011) The AP2/ERF transcription factor AtERF73/HRE1 modulates ethylene responses during hypoxia in Arabidopsis. Plant Physiol 156:202–212PubMedCentralPubMedGoogle Scholar
  197. Zarembinsky TI, Theologis A (1994) Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26:1579–1597Google Scholar
  198. Zegzouti H, Jones B, Frasse P, Marty C, Maitre B, Latche A, Pech JC, Bouzayen M (1999) Ethylene-regulated gene expression in tomato fruit: characterization of novel ethylene-response and ripening-related genes isolated by differential-display. Plant J 18:589–600PubMedGoogle Scholar
  199. Zhou Y, Wang CY, Ge H, Hoeberichts FA, Visser PB (2005) Programmed cell death in relation to petal senescence in ornamental plants. J Integr plant Biol 47:641–650Google Scholar
  200. Zhou L, Dong L, Jia PY, Wang WR, Wang LY (2010) Expression of ethylene receptor and transcription factor genes, and ethylene response during flower opening in tree peony (Paeonia suffruticosa). Plant Growth Regul 62:171–179Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Plant Physiology and Biochemistry Research Laboratory, Department of BotanyUniversity of KashmirSrinagarIndia

Personalised recommendations