Skip to main content
Log in

Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Osmotin or osmotin-like protein, a PR-5 family member, is differentially induced in plants by abiotic and biotic stresses. Here, we demonstrate that the pepper (Capsicum annuum) osmotin-like protein 1 gene, CaOSM1, was required for the defense and hypersensitive cell death response and oxidative burst signaling during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaOSM1 protein was localized to the plasma membrane in leaf cells of Nicotiana benthamiana. Agrobacterium-mediated transient expression of CaOSM1 in pepper distinctly induced the hypersensitive cell death response and H2O2 accumulation. Knock-down of CaOSM1 in pepper by virus-induced gene silencing increased the susceptibility to Xcv infection, which was accompanied by attenuation of the cell death response and decreased accumulation of H2O2. CaOSM1 overexpression in transgenic Arabidopsis conferred reduced susceptibility and accelerated cell death response and H2O2 accumulation to infection by Pseudomonas syringe pv. tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that CaOSM1 is involved in cell death and oxidative burst responses during plant defense against microbial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baek D, Nam J, Koo YD, Kim DH, Lee J, Jeong JC, Kwak SS, Chung WS, Lim CO, Bahk JD, Hong JC, Lee SY, Kawai-Yamada M, Uchimiya H, Yun DJ (2004) Bax-induced cell death of Arabidopsis is meditated through reactive oxygen-dependent and -independent processes. Plant Mol Biol 56:15–27

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S, Ødum N, Jørgensen LB, Brown RE, Mundy J (2002) Knockout of Arabidopsis ACCELERATED-CELL-DEATH11 encoding a sphingosine transfer protein cause activation of programmed cell death and defense. Genes Dev 16:490–502

    Article  PubMed  CAS  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23:823–842

    Article  PubMed  CAS  Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    Article  PubMed  CAS  Google Scholar 

  • Choi DS, Hwang IS, Hwang BK (2012) Requirement of the cytosolic interaction between PATHOGENESIS-RELATED PROTEIN10 and LEUCINE-RICH REPEAT PROTEIN1 for cell death and defense signaling in pepper. Plant Cell 24:1675–1690

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dangl JD, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genetics 98:955–961

    Article  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • Edreva A (2005) Pathogenesis-related proteins: research progress in the last 15 years. Gen Appl Plant Physiol 31:105–124

    CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S (2008) The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 148:1695–1706

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones JDG (1996) Resistance gene-dependent plant defense response. Plant Cell 8:1773–1791

    PubMed  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Heller WE, Gessler C (1986) Induced systemic resistance in tomato plants against Phytophthora infestans. J Phytopathol 116:323–328

    Article  Google Scholar 

  • Hong JK, Jung HW, Lee BK, Lee SC, Lee YK, Hwang BK (2004) An osmotin-like protein gene, CaOSM1, from pepper: differential expression and in situ localization of its mRNA during pathogen infection and abiotic stress. Physiol Mol Plant Pathol 64:301–310

    Article  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155:447–463

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Jin L, Yoshinaga K, Hirata A, Uchimiya H (2001) Mammalian Bax-induced plant cell death can be down-regulated by overexpression of Arabidopsis Bax Inhibitor-1 (AtBI-1). Proc Natl Acad Sci USA 98:12295–12300

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Hwang BK (2011) The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell death responses. Plant J 66:642–655

    Article  PubMed  CAS  Google Scholar 

  • Kononowicz AK, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Regulation of the osmotin gene promoter. Plant Cell 4:513–524

    PubMed  CAS  Google Scholar 

  • La Rosa PC, Chen Z, Nelson DE, Singh NK, Hasegawa PM, Bressean RA (1992) Osmotin gene expression is posttanscriptionally regulated. Plant Physiol 100:409–415

    Article  Google Scholar 

  • Lee DH, Choi HW, Hwang BK (2011) The pepper E3 ubiquitin ligase RING1 gene, CaRING1, is required for cell death and the salicylic acid-dependent defense response. Plant Physiol 156:2011–2025

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91:1888–1892

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51:941–954

    Article  PubMed  CAS  Google Scholar 

  • Manandhar HK, Mathur SB, Smedegaaed-Petersen V, Thordal-Christensen H (1999) Accumulation of transcripts for pathogenesis-related proteins and peroxidase in rice plants triggered by Pyricularia oryzae, Bipolaris sorokiniana and U.V. light. Physiol Mol Plant Pathol 55:289–295

    Article  CAS  Google Scholar 

  • Mateo A, Mühlenbock P, Rustérucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8:921–930

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180

    Article  PubMed  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Pierpoint WS, Jackson PJ, Evans RM (1990) The presence of a thaumatin-like protein, a chitinase and a glucanase among the pathogenesis-related proteins of potato (Solanum tuberosum). Physiol Mol Plant Pathol 36:325–338

    Article  CAS  Google Scholar 

  • Rajasekhar VK, Lamb C, Dixon RA (1999) Early events in the signal pathway for the oxidative burst in soybean cells exposed to avirulent Pseudomonas syringae pv glycinea. Plant Physiol 120:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Reimmann C, Dudler R (1993) cDNA cloning and sequence analysis of a pathogen-induced thaumatin-like protein from rice (Oryza sativa). Plant Physiol 101:1113–1114

    Article  PubMed  CAS  Google Scholar 

  • Rieder B, Neuhaus HE (2011) Identification of an Arabidopsis plasma membrane-located ATP transporter important for anther development. Plant Cell 23:1932–1944

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin: a thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85:529–536

    Article  PubMed  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Furuse K, Doke N, Kawakita K (1997) Identification of chitinase and osmotin-like protein as actin-binding proteins in suspension-cultures potato cells. Plant Cell Physiol 38:441–448

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler S, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    PubMed  CAS  Google Scholar 

  • van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  Google Scholar 

  • van Loon LC, van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  Google Scholar 

  • van Loon LC, Pierpoint WS, Boller T, Conejero V (1994) Recommendations for naming plant pathogenesis-related proteins. Plant Mol Biol Report 12:245–264

    Article  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  Google Scholar 

  • Watanabe N, Lam E (2011) Arabidopsis metacaspase 2d is a positive mediator of cell death induced during biotic and abiotic stresses. Plant J 66:969–982

    Article  PubMed  CAS  Google Scholar 

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van den Elzen PJM, Cornelissen BJC (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3:619–628

    PubMed  CAS  Google Scholar 

  • Yoshioka K, Kachroo P, Tsui F, Sharma SB, Shah J, Klessig DF (2001) Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant J 26:447–459

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, Zhao Y, Pardo JM, Narasimhan ML, Damsz B, Lee H, Abad LR, D’Urzo MP, Hasegawa PM, Bressan RA (1997) Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. Proc Natl Acad Sci USA 94:7082–7087

    Article  PubMed  CAS  Google Scholar 

  • Yun DJ, Ibeas JI, Lee H, Coca MA, Narasimhan ML, Uesono Y, Hasegawa PM, Pardo JM, Bressan RA (1998) Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell 1:807–817

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou JM (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1:175–185

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Menke FLH, Yoshioka K, Moeder W, Shirano Y, Klessig DF (2004) High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression. Plant J 39:920–932

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Chen THH, Li PH (1995) Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiol 108:929–937

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Next Generation BioGreen21 Program (Plant Molecular Breeding Center, Grant no. PJ008027 and Agricultural Genome Center, Grant no. PJ008211) of the Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Kook Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, D.S., Hong, J.K. & Hwang, B.K. Pepper osmotin-like protein 1 (CaOSM1) is an essential component for defense response, cell death, and oxidative burst in plants. Planta 238, 1113–1124 (2013). https://doi.org/10.1007/s00425-013-1956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1956-3

Keywords

Navigation