Skip to main content

Advertisement

Log in

Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble chlorophyll-binding protein (WSCP) from Virginia pepperweed (Lepidium virginicum), a unique WSCP that preferentially binds chlorophyll b in vitro

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Various plants possess non-photosynthetic, hydrophilic chlorophyll (Chl) proteins called water-soluble Chl-binding proteins (WSCPs). WSCPs are categorized into two classes; Class I (photoconvertible type) and Class II (non-photoconvertible type). Among Class II WSCPs, only Lepidium virginicum WSCP (LvWSCP) exhibits a low Chl a/b ratio compared with that found in the leaf. Although the physicochemical properties of LvWSCP have been characterized, its molecular properties have not yet been documented. Here, we report the characteristics of the LvWSCP gene, the biochemical properties of a recombinant LvWSCP, and the intracellular localization of LvWSCP. The cloned LvWSCP gene possesses a 669-bp open reading frame. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis revealed that the precursor of LvWSCP contains both N- and C-terminal extension peptides. RT-PCR analysis revealed that LvWSCP was transcribed in various tissues, with the levels being higher in developing tissues. A recombinant LvWSCP and hexa-histidine fusion protein (LvWSCP-His) could remove Chls from the thylakoid in aqueous solution and showed an absorption spectrum identical to that of native LvWSCP. Although LvWSCP-His could bind both Chl a and Chl b, it bound almost exclusively to Chl b when reconstituted in 40 % methanol. To clarify the intracellular targeting functions of the N- and C-terminal extension peptides, we constructed transgenic Arabidopsis thaliana lines expressing the Venus protein fused with the LvWSCP N- and/or C-terminal peptides, as well as Venus fused at the C-terminus of LvWSCP. The results showed that the N-terminal peptide functioned in ER body targeting, while the C-terminal sequence did not act as a trailer peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

Chl:

Chlorophyll

C-terminal/terminus:

Carboxy terminal/terminus

EMSA:

Electrophoretic mobility shift assay

ER:

Endoplasmic reticulum

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

KTI:

Kunitz-type trypsin inhibitor

MALDI-TOF–MS:

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry

NOS:

Nopaline synthase

N-terminal/terminus:

Amino terminal/terminus

WSCP:

Water-soluble chlorophyll-binding protein

WT:

Wild type

References

  • Annamalai P, Yanagihara S (1999) Identification and characterization of heat-stress induced gene in cabbage encodes a Kunitz type protease inhibitor. J Plant Physiol 155:226–233

    Article  CAS  Google Scholar 

  • Bektas I, Fellenferg C, Paulsen H (2012) Water-soluble chlorophyll protein (WSCP) of Arabidopsis is expressed in the gynoecium and developing silique. Planta 236:251–259

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:736–743

    Article  Google Scholar 

  • D’Hooghe P, Escamez S, Trouverie J, Avice JC (2013) Sulphur limitation provokes physiological and leaf proteome changes in oilseed rape that lead to perturbation of sulphur, carbon and oxidative metabolisms. BMC Plant Biol 13:23. doi:10.1186/1471-2229-13-23

    Article  PubMed  Google Scholar 

  • Damaraju S, Schlede S, Eckhardt U, Lokstein H, Grimm B (2011) Functions of the water soluble chlorophyll-binding protein in plants. J Plant Physiol 168:1444–1451

    Article  PubMed  CAS  Google Scholar 

  • Desclos M, Dubousset L, Etienne P, Le Caherec F, Satoh H, Bonnefoy J et al (2008) A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions. Plant Physiol 147:1830–1844

    Article  PubMed  CAS  Google Scholar 

  • Downing WL, Mauxion F, Fauvarque MO, Reviron MP, de Vienne D, Vartanian N et al (1992) A Brassica napus transcript encoding a protein related to the Künitz protease inhibitor family accumulates upon water stress in leaves, not in seeds. Plant J 2:685–693

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Etienne P, Desclos M, Le Gou L, Gombert J, Bonnefoy J, Maurel K et al (2007) N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity. Funct Plant Biol 34:895–906

    Article  CAS  Google Scholar 

  • Hagar WG, Hiyama T (1979) Characterization of the light-induced transient states of the chlorophyll proteins 668 and 743 from Atriplex rosea. Plant Physiol 63:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Halls CE, Rogers SW, Oufattole M, Ostergard O, Sevensson B, Rogers JC (2006) A Kunitz-type cysteine protease inhibitor from cauliflower and Arabidopsis. Plant Sci 170:1102–1110

    Article  CAS  Google Scholar 

  • Hirabayashi H, Amakawa M, Kamimura Y, Shino Y, Satoh H, Itoh S et al (2006) Analysis of photooxidized pigments in water-soluble chlorophyll protein complex isolated from Chenopodium album. J Photochem Photobiol 183:121–125

    Article  CAS  Google Scholar 

  • Horigome D, Satoh H, Uchida A (2003) Purification, crystallization and preliminary X-ray analysis of a water-soluble chlorophyll protein from Brassica oleracea L. var. acephala (kale). Acta Crystallogr D Biol Csystallogr 59:2283–2285

    Article  Google Scholar 

  • Horigome D, Satoh H, Itoh N, Mitsunaga K, Oonishi I, Nakagawa A et al (2007) Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein. J Biol Chem 282:6525–6531

    Article  PubMed  CAS  Google Scholar 

  • Hörtensteiner S (2013) Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol 82:505–517

    Article  PubMed  Google Scholar 

  • Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Article  PubMed  Google Scholar 

  • Hughes JL, Razeghifard R, Logue M, Oakle A, Wydrzynski T, Krausz E (2006) Magneto-optic spectroscopy of a protein tetramer binding two exciton-coupled chlorophylls. J Am Chem Soc 128:3649–3658

    Article  PubMed  CAS  Google Scholar 

  • Ilami G, Nespoulous C, Huet JC, Vartanian N, Pernollet JC (1997) Characterization of BnD22, a drought-induced protein expressed in Brassica napus leaves. Phytochemistry 45:1–8

    Article  CAS  Google Scholar 

  • Itoh R, Itoh S, Sugawa M, Oishi O, Tabata K, Okada M et al (1982) Isolation of crystalline water-soluble chlorophyll proteins with different chlorophyll a and b contents from stems and leaves of Lepidium virginicum. Plant Cell Physiol 23:557–560

    CAS  Google Scholar 

  • Iversen TH (1970) The morphology, occurrence, and distribution of dilated cisternae of the endoplasmic reticulum in tissues of plants of the Cruciferae. Protoplasma 71:467–477

    Article  Google Scholar 

  • Kamimura Y, Mori T, Yamasaki T, Katoh S (1997) Isolation, properties and a possible function of a water-soluble chlorophyll a/b-protein from brussels sprouts. Plant Cell Physiol 38:133–138

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Schellenberg M, Vicentini F (1997) Localization of chlorophyllase in the chloroplast envelope. Planta 201:96–99

    Article  CAS  Google Scholar 

  • Matsushima R, Kondo M, Nishimura M, Hara-Nishimura I (2003) A novel ER-derived compartment, the ER body, selectively accumulates a β-glucosidase with an ER-retention signal in Arabidopsis. Plant J 33:493–502

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Ishikawa C (1981) Chemical, physicochemical and spectrophotometric properties of crystalline chlorophyll-protein complexes from Lepidium virginicum L. Biochim Biophys Acta 635:341–347

    Article  PubMed  CAS  Google Scholar 

  • Murata T, Murata N (1971) Water-soluble chlorophyll-proteins from Brassica nigra and Lepidium virginicum. Carnegie Inst Wash Yearb 70:504–507

    Google Scholar 

  • Murata T, Toda F, Uchino K, Yakushiji E (1971) Water-soluble chlorophyll protein of Brassica oleracea var. botrys (cauliflower). Biochim Biophys Acta 245:208–215

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot Eng 10:1–6

    Article  CAS  Google Scholar 

  • Nishio N, Satoh H (1997) A water-soluble chlorophyll protein in cauliflower may be identical to BnD22, a drought-induced, 22-kilodalton protein in rapeseed. Plant Physiol 115:841–846

    Article  PubMed  CAS  Google Scholar 

  • Noguchi T, Kamimura Y, Inoue Y, Itoh S (1999) Photoconversion of a water-soluble chlorophyll protein from Chenopodium album: resonance Raman and Fourier transform infrared study of protein and pigment structures. Plant Cell Physiol 40:305–310

    Article  CAS  Google Scholar 

  • Oku T, Yoshida M, Tomita G (1972) The photoconversion of heat-treated Chenopodium chlorophyll protein and its pH dependence. Plant Cell Physiol 13:773–782

    CAS  Google Scholar 

  • Pieper J, Rätsep M, Trostmann I, Paulsen H, Renger G, Freiberg A (2011a) Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. I. Difference fluorescence line-narrowing. J Phys Chem B 115:4042–4052

    Article  PubMed  CAS  Google Scholar 

  • Pieper J, Rätsep M, Trostmann I, Schmitt FJ, Theiss C, Paulsen H et al (2011b) Excitonic energy level structure and pigment-protein interactions in the recombinant water-soluble chlorophyll protein. II. Spectral hole-burning experiments. J Phys Chem B 115:4053–4065

    Article  PubMed  CAS  Google Scholar 

  • Renger T, Trostmann I, Theiss C, Madjet ME, Richter M, Paulsen H et al (2007) Refinement of a structural model of a pigment-protein complex by accurate optical line shape theory and experiments. J Phys Chem B 111:10487–10501

    Article  PubMed  CAS  Google Scholar 

  • Renger G, Pieper J, Theiss C, Trostmann I, Paulsen H, Renger T et al (2011) Water soluble chlorophyll binding protein of higher plants: a most suitable model system for basic analyses of pigment–pigment and pigment-protein interactions in chlorophyll protein complexes. J Plant Physiol 168:1462–1472

    Article  PubMed  CAS  Google Scholar 

  • Reviron MP, Vartanian N, Sallantin M, Huet JC, Pernollet JC, de Vienne D (1992) Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol 100:1486–1493

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andrès CB et al (2012) STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24:507–518

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Nakayama K, Okada M (1998) Molecular cloning and functional expression of a water-soluble chlorophyll protein, a putative carrier of chlorophyll molecules in cauliflower. J Biol Chem 273:30568–30575

    Article  PubMed  CAS  Google Scholar 

  • Satoh H, Uchida A, Nakayama K, Okada M (2001) Water-soluble chlorophyll protein in Brassicaceae plants is a stress-induced chlorophyll-binding protein. Plant Cell Physiol 42:906–911

    Article  PubMed  CAS  Google Scholar 

  • Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K et al (2009) Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. Plant Cell 21:767–785

    Article  PubMed  CAS  Google Scholar 

  • Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dörmann P, Hörtensteiner H (2007) The chlorophyllase AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett 581:5517–5525

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K, Fufezan C, Krieger-Liszkay A, Satoh H, Paulsen H (2003) Recombinant water-soluble chlorophyll protein from Brassica oleracea var. Botrys binds various chlorophyll derivatives. Biochemistry 42:7427–7433

    Article  PubMed  CAS  Google Scholar 

  • Schmitt FJ, Trostmann I, Theiss C, Pieper J, Renger T, Fuesers J et al (2008) Excited state dynamics in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower investigated by transient fluorescence spectroscopy. J Phys Chem B 112:13951–13961

    Article  PubMed  CAS  Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I et al (2008) PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54:428–439

    Article  PubMed  CAS  Google Scholar 

  • Shinashi K, Satoh H, Uchida A, Nakayama K, Okada M, Oonishi I (2000) Molecular characterization of a water-soluble chlorophyll protein from main veins of Japanese radish. J Plant Physiol 157:255–262

    Article  CAS  Google Scholar 

  • Takahashi S, Yanai H, Nakamaru Y, Uchida A, Nakayama K, Satoh H (2012) Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble chlorophyll-binding protein from Brussels sprouts (Brassica oleracea var. gemmifera). Plant Cell Physiol 53:879–891

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Yoshikawa M, Kamada A, Ohtsuki T, Uchida A, Nakayama K, et al (2013a) The photoconvertible water-soluble chlorophyll-binding protein from Chenopodium album is a member of DUF538, a superfamily that distributes in Embryophyta. J Plant Physiol (in press)

  • Takahashi S, Ono M, Uchida A, Nakayama K, Satoh H (2013b) Molecular cloning and functional expression of a water-soluble chlorophyll-binding protein from Japanese wild radish. J Plant Physiol 170:406–412

    Article  PubMed  CAS  Google Scholar 

  • Takamiya A, Kamimura Y, Kira A (1968) A transient form of chlorophyll produced by flash photolysis of Chenopodium chlorophyll protein, CP668. In: Shibata K, Takamiya A, Jagendorf AT, Fuller RC (eds) Comparative biochemistry and biophysics of photosynthesis. University of Tokyo Press, Tokyo, pp 229–239

    Google Scholar 

  • Tanaka R, Tanaka A (2007) Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol 58:321–346

    Article  PubMed  CAS  Google Scholar 

  • Theiss C, Trostmann I, Andree S, Schmitt FJ, Renger T, Eichler HJ et al (2007) Pigment-pigment and pigment-protein interactions in recombinant water-soluble chlorophyll proteins (WSCP) from cauliflower. J Phys Chem B 111:13325–13335

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Yakushiji E, Uchino K, Sugimura Y, Shiratori I, Takamiya F (1963) Isolation of water-soluble chlorophyll protein from the leaves of Chenopodium album. Biochim Biophys Acta 75:293–298

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Hara-Nishimura I, Nishimura M (2011) Unique defense strategy by the endoplasmic reticulum body in plants. Plant Cell Physiol 52:2039–2049

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Nagano AJ, Nishina M, Hara-Nishimura I, Nishimura M (2013) Identification of two novel endoplasmic reticulum body-specific integral membrane proteins. Plant Physiol 161:108–120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Soichiro Watanabe for his kind help in the preparation of Chls a and b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Satoh.

Additional information

The nucleotide sequence reported in this paper has been submitted to DDBJ under accession number AB002589.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, S., Yanai, H., Oka-Takayama, Y. et al. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble chlorophyll-binding protein (WSCP) from Virginia pepperweed (Lepidium virginicum), a unique WSCP that preferentially binds chlorophyll b in vitro. Planta 238, 1065–1080 (2013). https://doi.org/10.1007/s00425-013-1952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1952-7

Keywords

Navigation