, Volume 238, Issue 4, pp 669–681 | Cite as

Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots

Original Article


The world population continually faces challenges of water scarcity for agriculture. A common strategy called water-balance control has evolved to adapt plant growth to these challenges. Aquaporins are a family of integral membrane proteins that play a central role in water-balance control. In this study, we identified 34 members of the rice aquaporin gene family, adding a novel member to the previous list. A combination of phylogenetic tree and anatomical meta-expression profiling data consisting of 983 Affymetrix arrays and 209 Agilent 44 K arrays was used to identify tissue-preferred aquaporin genes and evaluate functional redundancy among aquaporin family members. Eight aquaporins showed root-preferred expression in the vegetative growth stage, while 4 showed leaf/shoot-preferred expression. Integrating stress-induced expression patterns into phylogenetic tree and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed that 3 rice aquaporin genes were markedly downregulated and 4 were upregulated by water deficiency in the root, suggesting that these candidate genes are key regulators of water uptake from the soil. Finally, we constructed a functional network of genes mediated by water stress and refined the network by confirming the differential expression using RT-PCR and real-time PCR. Our data will be useful to elucidate the molecular mechanism of water-balance control in rice root.


Drought stress in root Functional gene network Gene redundancy Meta-profiling analysis 











Low silicon rice


Molecular evolutionary genetics analysis




Nodulin 26-like intrinsic proteins


Asparagine–proline–alanine region


Plasma membrane intrinsic proteins


Semi-quantitative reverse transcription polymerase chain reaction


Rice genome annotation project database


Rice water channel


Shoot apical meristem




Small basic intrinsic proteins


Tonoplast intrinsic proteins


Uncategorized X intrinsic proteins

Supplementary material

425_2013_1918_MOESM1_ESM.jpg (1.3 mb)
Fig. S1 Chromosomal distribution of 34 rice aquaporin genes. Red boxes denote a new member (JPEG 1311 kb)
425_2013_1918_MOESM2_ESM.jpg (1.2 mb)
Fig. S2 The phylogenetic tree of rice aquaporin proteins (JPEG 1231 kb)
425_2013_1918_MOESM3_ESM.eps (3.7 mb)
Fig. S3 The phylogenomic data of the rice aquaporins with orthologs from Arabidopsis and maize (EPS 3828 kb)
425_2013_1918_MOESM4_ESM.jpg (1.6 mb)
Fig. S4 Anatomical expression of rice aquaporin genes using 1150 Affymetrix and 209 Agilent 44 K arrays. A black bar denotes an indica cultivar and a grey bar a japonica cultivar (JPEG 1598 kb)
425_2013_1918_MOESM5_ESM.xlsx (13 kb)
Table S1 Detailed information for 34 rice aquaporin genes (XLSX 12 kb)
425_2013_1918_MOESM6_ESM.docx (19 kb)
Table S2 Primer sequences for RT-PCR and real-time PCR of aquaporin genes and genes functionally associated with aquaporins, used in Figs. 2, 4, and 5 (DOCX 19 kb)
425_2013_1918_MOESM7_ESM.xlsx (34 kb)
Table S3 Detailed comparison of microarrays used for Fig. 3 (XLSX 34 kb)


  1. Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484PubMedCrossRefGoogle Scholar
  2. Boursiac Y, Prak S, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Santoni V, Maurel C (2008) The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species- and phosphorylation-dependent internalization of aquaporins. Plant Signal Behav 3:1096–1098PubMedCrossRefGoogle Scholar
  3. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215PubMedCrossRefGoogle Scholar
  4. Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642PubMedGoogle Scholar
  5. Eynard A, Lal R, Wiebe K (2005) Crop response in salt-affected soils. J Sustain Agric 27:5–50CrossRefGoogle Scholar
  6. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15PubMedCrossRefGoogle Scholar
  7. Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006) Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Res 16:277–286PubMedCrossRefGoogle Scholar
  8. Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE 4:e7531PubMedCrossRefGoogle Scholar
  9. Heckwolf M, Pater D, Hanson DT, Kaldenhoff R (2011) The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J 67:795–804PubMedCrossRefGoogle Scholar
  10. Ishibashi K, Kondo S, Hara S, Morishita Y (2011) The evolutionary aspects of aquaporin family. Am J Physiol Regul Integr Comp Physiol 300:R566–R576PubMedCrossRefGoogle Scholar
  11. Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M (2005) Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Lett 579:5814–5820PubMedCrossRefGoogle Scholar
  12. Jang JY, Kim DG, Kim YO, Kim JS, Kang H (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725PubMedCrossRefGoogle Scholar
  13. Jang JY, Lee SH, Rhee JY, Chung GC, Ahn SJ, Kang H (2007) Transgenic Arabidopsis and tobacco plants overexpressing an aquaporin respond differently to various abiotic stresses. Plant Mol Biol 64:621–632PubMedCrossRefGoogle Scholar
  14. Javot H, Lauvergeat V, Santoni V, Martin-Laurent F, Guclu J, Vinh J, Heyes J, Franck KI, Schaffner AR, Bouchez D, Maurel C (2003) Role of a single aquaporin isoform in root water uptake. Plant Cell 15:509–522PubMedCrossRefGoogle Scholar
  15. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Do Choi Y, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197PubMedCrossRefGoogle Scholar
  16. Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369PubMedCrossRefGoogle Scholar
  17. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686PubMedCrossRefGoogle Scholar
  18. Jolivet P, Roux E, D’Andrea S, Davanture M, Negroni L, Zivy M, Chardot T (2004) Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol Biochem 42:501–509PubMedCrossRefGoogle Scholar
  19. Josine TL, Ji J, Wang G, Guan CF (2011) Advances in genetic engineering for plants abiotic stress control. Afr J Biotechnol 10:5402–5413Google Scholar
  20. Jung KH, Lee J, Dardick C, Seo YS, Cao P, Canlas P, Phetsom J, Xu X, Ouyang S, An K, Cho YJ, Lee GC, Lee Y, An G, Ronald PC (2008) Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet 4:e1000164PubMedCrossRefGoogle Scholar
  21. Kaldenhoff R, Fischer M (2006) Aquaporins in plants. Acta Physiol (Oxf) 187:169–176CrossRefGoogle Scholar
  22. Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 284:2114–2120PubMedCrossRefGoogle Scholar
  23. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  24. Lee I, Seo YS, Coltrane D, Hwang S, Oh T, Marcotte EM, Ronald PC (2011) Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc Natl Acad Sci USA 108:18548–18553PubMedCrossRefGoogle Scholar
  25. Li GW, Peng YH, Yu X, Zhang MH, Cai WM, Sun WN, Su WA (2008a) Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. J Plant Physiol 165:1879–1888PubMedCrossRefGoogle Scholar
  26. Li GW, Zhang MH, Cai WM, Sun WN, Su WA (2008b) Characterization of OsPIP2;7, a water channel protein in rice. Plant Cell Physiol 49:1851–1858PubMedCrossRefGoogle Scholar
  27. Lian HL, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489PubMedCrossRefGoogle Scholar
  28. Lian HL, Yu X, Lane D, Sun WN, Tang ZC, Su WA (2006) Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Cell Res 16:651–660PubMedCrossRefGoogle Scholar
  29. Liang G, He H, Li Y, Yu D (2012) A new strategy for construction of artificial miRNA vectors in Arabidopsis. Planta 235:1421–1429PubMedCrossRefGoogle Scholar
  30. Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y, Iwasaki I, Ding X, Calamita G, Kitagawa Y (2013) Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. Plant Physiol Biochem 63:151–158PubMedCrossRefGoogle Scholar
  31. Lu HA, Sun TX, Matsuzaki T, Yi XH, Eswara J, Bouley R, McKee M, Brown D (2007) Heat shock protein 70 interacts with aquaporin-2 and regulates its trafficking. J Biol Chem 282:28721–28732PubMedCrossRefGoogle Scholar
  32. Luu DT, Maurel C (2005) Aquaporins in a challenging environment: molecular gears for adjusting plant water status. Plant Cell Environ 28:85–96CrossRefGoogle Scholar
  33. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefGoogle Scholar
  34. Matsumoto T, Lian HL, Su WA, Tanaka D, Liu C, Iwasaki I, Kitagawa Y (2009) Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice. Plant Cell Physiol 50:216–229PubMedCrossRefGoogle Scholar
  35. Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429PubMedCrossRefGoogle Scholar
  36. Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J (2002) Molecular physiology of aquaporins in plants. Int Rev Cytol 215:105–148PubMedCrossRefGoogle Scholar
  37. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624PubMedCrossRefGoogle Scholar
  38. Mendonca AG, Alves RJ, Pereira-Leal JB (2011) Loss of genetic redundancy in reductive genome evolution. PLoS Comput Biol 7:e1001082PubMedCrossRefGoogle Scholar
  39. Mihara M, Itoh T, Izawa T (2010) SALAD database: a motif-based database of protein annotations for plant comparative genomics. Nucleic Acids Res 38:D835–D842PubMedCrossRefGoogle Scholar
  40. Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913PubMedCrossRefGoogle Scholar
  41. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107:15681–15686PubMedCrossRefGoogle Scholar
  42. Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398PubMedCrossRefGoogle Scholar
  43. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  44. Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379PubMedCrossRefGoogle Scholar
  45. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell CR (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:D883–D887PubMedCrossRefGoogle Scholar
  46. Pandey S, Bhandari H, Hardy B (2007) Economic costs of drought and rice farmers’ coping mechanisms: a cross-country comparative analysis. International Rice Research Institute, Los Baños, p 203Google Scholar
  47. Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37(389–397):381–382Google Scholar
  48. Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schaffner AR, Maurel C (2010) A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol 152:1418–1430PubMedCrossRefGoogle Scholar
  49. Preston GM, Agre P (1991) Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 88:11110–11114PubMedCrossRefGoogle Scholar
  50. Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3: RESEARCH0001Google Scholar
  51. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696PubMedCrossRefGoogle Scholar
  52. Rouard M, Guignon V, Aluome C, Laporte MA, Droc G, Walde C, Zmasek CM, Perin C, Conte MG (2011) GreenPhylDB v2.0: comparative and functional genomics in plants. Nucleic Acids Res 39:D1095–D1102PubMedCrossRefGoogle Scholar
  53. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J (2006) TM4 microarray software suite. Methods Enzymol 411:134–193PubMedCrossRefGoogle Scholar
  54. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577PubMedCrossRefGoogle Scholar
  55. Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M (2008) Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physiol 49:30–39PubMedCrossRefGoogle Scholar
  56. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCrossRefGoogle Scholar
  57. Soto G, Alleva K, Mazzella MA, Amodeo G, Muschietti JP (2008) AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett 582:4077–4082PubMedCrossRefGoogle Scholar
  58. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  59. Torres GAM, Gimenes MA, de Rosa Jr VE, Quecini V (2007) Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis. Genet Mol Biol 30:888–905CrossRefGoogle Scholar
  60. van der Schoot C, Paul LK, Paul SB, Rinne PL (2011) Plant lipid bodies and cell–cell signaling: a new role for an old organelle? Plant Signal Behav 6:1732–1738PubMedCrossRefGoogle Scholar
  61. Weaver CD, Shomer NH, Louis CF, Roberts DM (1994) Nodulin 26, a nodule-specific symbiosome membrane protein from soybean, is an ion channel. J Biol Chem 269:17858–17862PubMedGoogle Scholar
  62. Weig A, Deswarte C, Chrispeels MJ (1997) The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol 114:1347–1357PubMedCrossRefGoogle Scholar
  63. Yamaji N, Ma JF (2009) A transporter at the node responsible for intervascular transfer of silicon in rice. Plant Cell 21:2878–2883PubMedCrossRefGoogle Scholar
  64. Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389PubMedCrossRefGoogle Scholar
  65. Yu X, Peng YH, Zhang MH, Shao YJ, Su WA, Tang ZC (2006) Water relations and an expression analysis of plasma membrane intrinsic proteins in sensitive and tolerant rice during chilling and recovery. Cell Res 16:599–608PubMedCrossRefGoogle Scholar
  66. Zardoya R, Villalba S (2001) A phylogenetic framework for the aquaporin family in eukaryotes. J Mol Evol 52:391–404PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Plant Molecular Systems Biotechnology and Crop Biotech InstituteKyung Hee UniversityYonginKorea

Personalised recommendations