Planta

, Volume 238, Issue 4, pp 643–655

Molecular characterization and functional analysis of “fruit-weight2.2-like” gene family in rice

  • Jun Xu
  • Wentao Xiong
  • Baobao Cao
  • Tianze Yan
  • Tao Luo
  • Tingting Fan
  • Meizhong Luo
Original Article

Abstract

Tomato fruit-weight 2.2 (FW2.2) was reported to control up to 30 % fruit weight. Recent studies demonstrated that FW2.2-like (FWL) genes also play important roles in plant growth and development. For instance, a maize homolog of FW2.2, named cell number regulator 1 (CNR1), negatively regulates plant and organ size. However, FWL genes in rice have not been characterized yet. In this study, eight FWL genes were identified in rice genome and designated as OsFWL1-8. The chromosome location, gene structure, protein motif, and phylogenetic relationship of OsFWL genes were analyzed. RT-PCR result and microarray data revealed that OsFWL genes exhibited diverse expression patterns and the detailed expression patterns of OsFWL5, 6, and 7 negatively correlated with leaf growth activity. Rice protoplast transient transformation experiment showed that most OsFWL proteins locate at cell membrane but OsFWL8 is present in the nucleus. In addition, the functions of OsFWL genes were investigated by analyzing two T-DNA insertion lines for OsFWL3 and 5. Compared with wild type, the grain weight of osfwl3 mutant and the plant height of osfwl5 mutant were increased by 5.3 and 12.5 %, respectively. We also found that the increase in grain length of osfwl3 mutant was due chiefly to incremental cell number, not cell size and the expression of OsFWL3 negatively correlated with glume growth activity. These results provide a comprehensive foundation for further study of OsFWL functions in rice.

Keywords

CNR1 FW2.2 Growth activity OsFWL Rice 

Abbreviations

aa

Amino acid(s)

CNR1

Cell Number Regulator 1

FW2.2

Fruit-weight 2.2

FWL

FW2.2-like

OsFWL

Oryza sativa FW2.2-like

RT-PCR

Reverse transcription polymerase chain reaction

Supplementary material

425_2013_1916_MOESM1_ESM.doc (133 kb)
Supplementary material 1 (DOC 133 kb)

References

  1. Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000Google Scholar
  2. Bart R, Chern M, Park CJ, Bartley L, Ronald PC (2006) A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts. Plant Methods 2:13PubMedCrossRefGoogle Scholar
  3. Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10PubMedCrossRefGoogle Scholar
  4. Cao P, Jung K-H, Choi D, Hwang D, Zhu J, Ronald P (2012) The rice oligonucleotide array database: an atlas of rice gene expression. Rice 5:1–9CrossRefGoogle Scholar
  5. Chou KC, Shen HB (2010) Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS ONE 5:e11335PubMedCrossRefGoogle Scholar
  6. Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880PubMedCrossRefGoogle Scholar
  7. Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611PubMedCrossRefGoogle Scholar
  8. Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676PubMedCrossRefGoogle Scholar
  9. Dahan Y, Rosenfeld R, Zadiranov V, Irihimovitch V (2010) A proposed conserved role for an avocado FW2.2-like gene as a negative regulator of fruit cell division. Planta 232:663–676PubMedCrossRefGoogle Scholar
  10. Dai X, You C, Wang L, Chen G, Zhang Q, Wu C (2009) Molecular characterization, expression pattern, and function analysis of the OsBC1L family in rice. Plant Mol Biol 71:469–481PubMedCrossRefGoogle Scholar
  11. Espunya MC, Combettes B, Dot J, Chaubet-Gigot N, Martinez MC (1999) Cell-cycle modulation of CK2 activity in tobacco BY-2 cells. Plant J 19:655–666PubMedCrossRefGoogle Scholar
  12. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171PubMedCrossRefGoogle Scholar
  13. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  14. Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453PubMedCrossRefGoogle Scholar
  15. Guo M, Simmons CR (2011) Cell number counts—the fw2.2 and CNR genes and implications for controlling plant fruit and organ size. Plant Sci 181:1–7PubMedCrossRefGoogle Scholar
  16. Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026PubMedCrossRefGoogle Scholar
  17. Guo M, Rupe MA, Dieter JA, Zou J, Spielbauer D, Duncan KE, Howard RJ, Hou Z, Simmons CR (2010) Cell Number Regulator1 affects plant and organ size in maize: implications for crop yield enhancement and heterosis. Plant Cell 22:1057–1073PubMedCrossRefGoogle Scholar
  18. Hong SK, Kitano H, Satoh H, Nagato Y (1996) How is embryo size genetically regulated in rice? Development 122:2051–2058PubMedGoogle Scholar
  19. Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132PubMedCrossRefGoogle Scholar
  20. Kawahara Y, de la Bastide M, Hamilton J, Kanamori H, McCombie W, Ouyang S, Schwartz D, Tanaka T, Wu J, Zhou S, Childs K, Davidson R, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee S, Kim J, Numa H, Itoh T, Buell C, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:1–10CrossRefGoogle Scholar
  21. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H, Hotta I, Kojima K, Namiki T, Ohneda E, Yahagi W, Suzuki K, Li CJ, Ohtsuki K, Shishiki T, Otomo Y, Murakami K, Iida Y, Sugano S, Fujimura T, Suzuki Y, Tsunoda Y, Kurosaki T, Kodama T, Masuda H, Kobayashi M, Xie Q, Lu M, Narikawa R, Sugiyama A, Mizuno K, Yokomizo S, Niikura J, Ikeda R, Ishibiki J, Kawamata M, Yoshimura A, Miura J, Kusumegi T, Oka M, Ryu R, Ueda M, Matsubara K, Kawai J, Carninci P, Adachi J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Hayatsu N, Imotani K, Ishii Y, Itoh M, Kagawa I, Kondo S, Konno H, Miyazaki A, Osato N, Ota Y, Saito R, Sasaki D, Sato K, Shibata K, Shinagawa A, Shiraki T, Yoshino M, Hayashizaki Y, Yasunishi A (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379PubMedCrossRefGoogle Scholar
  22. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  23. Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J (2010) Cloning and characterization of a putative GS3 ortholog involved in maize kernel development. Theor Appl Genet 120:753–763PubMedCrossRefGoogle Scholar
  24. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269PubMedCrossRefGoogle Scholar
  25. Li J, Chu H, Zhang Y, Mou T, Wu C, Zhang Q, Xu J (2012) The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight. PLoS ONE 7:e34231PubMedCrossRefGoogle Scholar
  26. Libault M, Stacey G (2010) Evolution of FW2.2-like (FWL) and PLAC8 genes in eukaryotes. Plant Signal Behav 5:1226–1228PubMedCrossRefGoogle Scholar
  27. Libault M, Zhang XC, Govindarajulu M, Qiu J, Ong YT, Brechenmacher L, Berg RH, Hurley-Sommer A, Taylor CG, Stacey G (2010) A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J 62:852–864PubMedCrossRefGoogle Scholar
  28. Liu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol 132:292–299PubMedCrossRefGoogle Scholar
  29. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA 107:19579–19584PubMedCrossRefGoogle Scholar
  30. Moreno-Romero J, Espunya MC, Platara M, Arino J, Martinez MC (2008) A role for protein kinase CK2 in plant development: evidence obtained using a dominant-negative mutant. Plant J 55:118–130PubMedCrossRefGoogle Scholar
  31. Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T, Kishigami A, Sokabe M, Kojima I, Sato S, Kato T, Tabata S, Iida K, Terashima A, Nakano M, Ikeda M, Yamanaka T, Iida H (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644PubMedCrossRefGoogle Scholar
  32. Nakano M, Iida K, Nyunoya H, Iida H (2011) Determination of structural regions important for Ca(2+) uptake activity in Arabidopsis MCA1 and MCA2 expressed in yeast. Plant Cell Physiol 52:1915–1930PubMedCrossRefGoogle Scholar
  33. Nesbitt TC, Tanksley SD (2001) fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution. Plant Physiol 127:575–583PubMedCrossRefGoogle Scholar
  34. Salse J, Piegu B, Cooke R, Delseny M (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409PubMedCrossRefGoogle Scholar
  35. Sato Y, Takehisa H, Kamatsuki K, Minami H, Namiki N, Ikawa H, Ohyanagi H, Sugimoto K, Antonio BA, Nagamura Y (2013) RiceXPro Version 3.0: expanding the informatics resource for rice transcriptome. Nucleic Acids Res 41:D1206–D1213PubMedCrossRefGoogle Scholar
  36. Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039PubMedCrossRefGoogle Scholar
  37. Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630PubMedCrossRefGoogle Scholar
  38. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334PubMedCrossRefGoogle Scholar
  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  40. Thomson MJ, Tai TH, McClung AM, Lai XH, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493PubMedCrossRefGoogle Scholar
  41. Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946PubMedCrossRefGoogle Scholar
  42. Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q (2010) A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 61:752–766PubMedCrossRefGoogle Scholar
  43. Xing Y, Zhang Q (2010) Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61:421–442PubMedCrossRefGoogle Scholar
  44. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767PubMedCrossRefGoogle Scholar
  45. Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H, Terashima A, Iida K, Kojima I, Katagiri T, Shinozaki K, Iida H (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152:1284–1296PubMedCrossRefGoogle Scholar
  46. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Xiao Y, Bu D, Tan J, Yang L, Ye C, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Huang X, Su Z, Tong W, Tong Z, Ye J, Wang L, Lei T, Chen C, Chen H, Huang H, Zhang F, Li N, Zhao C, Huang Y, Li L, Xi Y, Qi Q, Li W, Hu W, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wong GK, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38PubMedCrossRefGoogle Scholar
  47. Yuan M, Chu Z, Li X, Xu C, Wang S (2010) The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution. Plant Cell 22:3164–3176PubMedCrossRefGoogle Scholar
  48. Zhang J, Li C, Wu C, Xiong L, Chen G, Zhang Q, Wang S (2006) RMD: a rice mutant database for functional analysis of the rice genome. Nucleic Acids Res 34:D745–D748PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jun Xu
    • 1
  • Wentao Xiong
    • 1
  • Baobao Cao
    • 1
  • Tianze Yan
    • 1
  • Tao Luo
    • 1
    • 2
  • Tingting Fan
    • 1
  • Meizhong Luo
    • 1
  1. 1.National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
  2. 2.Center for Neuropsychiatric Diseases, Institute of Life ScienceNanchang UniversityNanchangChina

Personalised recommendations