Skip to main content
Log in

Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The genus Wolffia of the duckweed family (Lemnaceae) contains the smallest flowering plants. Presently, 11 species are recognized and categorized mainly on the basis of morphology. Because of extreme reduction of structure of all species, molecular methods are especially required for barcoding and identification of species and clones of this genus. We applied AFLP combined with Bayesian analysis of population structure to 66 clones covering all 11 species. Nine clusters were identified: (1) W. angusta and W. microscopica (only one clone), (2) W. arrhiza, (3) W. cylindracea (except one clone that might be a transition form), (4) W. australiana, (5) W. globosa, (6) W. globosa, W. neglecta, and W. borealis, (7) W. brasiliensis, and W. columbiana, (8) W. columbiana, (9) W. elongata. Furthermore, we investigated the sequences of plastidic regions rps16 (54 clones) and rpl16 (55 clones), and identified the following species: W. angusta, W. australiana, W. brasiliensis, W. cylindracea, W. elongata, W. microscopica, and W. neglecta. Wolffia globosa has been separated into two groups by both methods. One group which consists only of clones from North America and East Asia was labelled here “typical W. globosa”. The other group of W. globosa, termed operationally “W. neglecta”, contains also clones of W. neglecta and shows high similarity to W. borealis. None of the methods recognized W. borealis as a distinct species. Although each clone could be characterized individually by AFLP and plastidic sequences, and most species could be bar-coded, the presently available data are not sufficient to identify all taxa of Wolffia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

BAPS:

Bayesian analysis of population structure

MP:

Maximum parsimony

NJ:

Neighbour-joining

UPGMA:

Un-weighted pair group method using arithmetic mean

References

  • Appenroth KJ, Augsten H, Liebermann B, Feist H (1982) Effect of light on amino-acid-composition of proteins in Wolffia arrhiza (L.) Wimm using a specially modified Bradford method. Biochem Physiol Pflanzen 177:251–258

    CAS  Google Scholar 

  • Appenroth K-J, Teller S, Horn M (1996) Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol Plant 38:95–106

    Article  Google Scholar 

  • Aziz A (2001) Illustrated account of Wolffia microscopica (Griff.) Kurz (Lemnaceae) from Sirajganj, Bangladesh. Bangladesh J Bot 30:149–151

    Google Scholar 

  • Baumbach H, Hellwig FH (2007) Genetic differentiation of metallicolous and non-metallicolous Armeria maritima (Mill.) Willd. taxa (Plumbaginaceae) in Central Europe. Plant Syst Evol 269:245–258

    Article  Google Scholar 

  • Bergmann BA, Cheng J, Classen J, Stomp AM (2000) In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Biores Technol 73:13–20

    Article  CAS  Google Scholar 

  • Bernard FA, Bernard JM, Denny P (1990) Flower structure, anatomy and life history of Wolffia australiana (Benth.) den Hartog & van der Plas. Bull Torrey Club 117:18–26

    Article  Google Scholar 

  • Bhantumnavin K, McGarry M (1971) Wolffia arrhiza as a possible source of inexpensive protein. Nature 232:495

    Article  Google Scholar 

  • Blüm V, Andriske M, Eichhorn M, Kreuzberg K, Schreibman MP (1995) A controlled aquatic ecological life support system (CAELSS) for combined production of fish and higher plant biomass suitable for integration into a lunar or planetary base. Acta Astronaut 37:361–371

    Article  PubMed  Google Scholar 

  • Bog M, Baumbach H, Schween U, Hellwig F, Landolt E, Appenroth K-J (2010) Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 232:609–619

    Article  PubMed  CAS  Google Scholar 

  • Cabrera LI, Salazar GA, Chase MW, Mayo SJ, Bogner J, Davila P (2008) Phylogenetic relationships of Aroids and duckweeds (Araceae) inferred from coding and noncoding plastid DNA. Am J Bot 95:1153–1165

    Article  PubMed  CAS  Google Scholar 

  • Cheng JJ, Stomp AM (2009) Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean Soil Air Water 37:17–26

    Article  CAS  Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multi-locus molecular markers. Mol Ecol 15:2833–2843

    Article  PubMed  Google Scholar 

  • Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9: Article number 539

  • Crawford DJ, Landolt E (1995) Allozyme divergence among species of Wolffia (Lemnaceae). Plant Syst Evol 197:59–69

    Article  CAS  Google Scholar 

  • Cusimano N, Bogner J, Mayo SJ, Boyce PC, Wong SY, Hesse M, Hetterscheid WLA, Keating RC, French JC (2011) Relationships within the Araceae: comparison of morphological patterns with molecular phylogeny. Am J Bot 98:654–668

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duester L, van der Geest HG, Moelleken S, Hirner AV, Kueppers K (2011) Comparative phytotoxicity of methylated and inorganic arsenic- and antimony species to Lemna minor, Wolffia arrhiza and Selenastrum capricornutum. Microchem J 97:30–37

    Article  CAS  Google Scholar 

  • Fujita M, Mori K, Kodera T (1999) Nutrient removal and starch production through cultivation of Wolffia arrhiza. J Biosci Bioeng 87:194–198

    Article  PubMed  CAS  Google Scholar 

  • Garg P, Chandra P (1994) The duckweed Wolffia globosa as an indicator of heavy metal pollution: sensitivity to Cr and Cd. Environ Monit Assess 29:89–95

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Islam KMS (2002) Feasibility of duckweed as poultry feed—A review. Indian J Anim Sci 72:486–491

    Google Scholar 

  • Jordan WC, Courtney MW, Neigel JE (1996) Low levels of intraspecific genetic variation at a rapid evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). Am J Bot 83:430–439

    Article  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata M (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Khurana JP, Tamot BK, Maheshwari SC (1986) Induction of flowering in a duckweed, Wolffia microscopica, under noninductive long days by 8-hydroxyquinoline. Plant Cell Physiol 27:373–376

    CAS  Google Scholar 

  • Krajncic B, Nemec J, Tojnko S, Vogrin A (1998) Promotion of flowering by Mn-EDDHA in the long-short-day plant Wolffia arrhiza (l.) Horkel ex Wimm. J Plant Physiol 153:777–780

    Article  CAS  Google Scholar 

  • Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcoding to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374

    Article  PubMed  CAS  Google Scholar 

  • Lahive E, O′Halloran J, Jansen MAK (2011) Differential sensitivity of four Lemnaceae species to zinc sulphate. Environ Exp Bot 71:25–33

    Article  CAS  Google Scholar 

  • Landolt E (1986) The family of Lemnaceae—a monographic study, vol 1. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, Zürich

  • Landolt E (1994) Taxonomy and ecology of the section Wolffia of the genus Wolffia (Lemnaceae). Ber Geobot Inst ETH, Stiftung Ruebel, Zurich 60:137–151

    Google Scholar 

  • Lemon GD, Posluszny U (2000) Comparative shoot development and evolution in the Lemnaceae. Inter J Plant Sci 161:733–748

    Article  Google Scholar 

  • Lemon GD, Posluszny U, Husband BC (2001) Potential and realized rates of vegetative reproduction in Spirodela polyrhiza, Lemna minor and Wolffia borealis. Aquat Bot 70:79–87

    Article  Google Scholar 

  • Les DH, Landolt E, Crawford DJ (1997) Systematics of the Lemnaceae (duckweeds): inferences from micromolecular and morphological data. Plant Syst Evol 204:161–177

    Article  Google Scholar 

  • Les DH, Crawford DJ, Landolt E, Gabel JD, Kimball RT (2002) Phylogeny and systematics of Lemnaceae, the duckweed family. Syst Bot 27:221–240

    Google Scholar 

  • Martirosyan EV, Ryzhova NN, Kochieva EZ, Skryabin KG (2009) Analysis of chloroplast rps16 intron sequences in Lemnaceae. Mol Biol 43:32–38

    Article  CAS  Google Scholar 

  • Meier R, Kwong S, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728

    Article  PubMed  Google Scholar 

  • Naumann B, Eberius M, Appenroth KJ (2007) Growth rate based dose–response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. J Plant Physiol 164:1656–1664

    Article  PubMed  CAS  Google Scholar 

  • Oxelman B, Liden M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Silenae (Caryophyllaceae). Plant Syst Evol 206:393–410

    Article  Google Scholar 

  • Piotrowska A, Bajguz A, Godlewska-Zylkiewicz Zambrycka E (2010) Changes in growth, biochemical components, and antioxidant activity in aquatic plant Wolffia arrhiza (Lemnaceae) exposed to cadmium and lead. Arch Environ Contam Toxicol 58:594–604

    Article  PubMed  CAS  Google Scholar 

  • Rothwell GW, Van Atta MR, Ballard HE, Stockey RA (2004) Molecular phylogenetic relationships among Lemnaceae and Araceae using the chloroplast trnL-trnF intergenic spacer. Mol Phyl Evol 30:378–385

    Article  CAS  Google Scholar 

  • Ryzhova NN, Martyrosian LV, Kolganova TV, Goryunova SV, Kochieva EZ (2006) Characterization of the trnL-trnF spacer sequence of the chloroplast tRNA genes in Spirodela species. Mol Biol 40:891–896

    Article  CAS  Google Scholar 

  • Suppadit T (2011) Nutrient removal of effluent from quail farm through cultivation of Wolffia arrhiza. Biores Technol 102:7388–7392

    Article  CAS  Google Scholar 

  • Suppadit T, Phoochinda W, Phutthilerphong S, Nieobubpa C (2008) Treatment of effluent from shrimp farms using watermeal (Wolffia arrhiza). Science Asia 34:163–168

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabenau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Messing J (2011) High-throughput sequencing of three Lemnoideae (duckweeds) chloroplasts genomes from total DNA. PlosOne 6(9):1–9

    Google Scholar 

  • Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J (2010) DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol 10:205–214

    Article  PubMed  CAS  Google Scholar 

  • White SL, Wise RR (1998) Anatomy and ultrastructure of Wolffia columbiana and Wolffia borealis, two nonvascular aquatic angiosperms. Int J Plant Sci 159:297–304

    Article  Google Scholar 

  • Xu J, Cheng JJ, Stomp AM (2012) Nutrient removal from swine wastewater by growing duckweed: a pilot study. Transactions ASABE 1:181–185

    Google Scholar 

  • Zhang A, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182:421–428

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Appenroth K, Landesman L, Salmean AA, Lam E (2012) Duckweed rising at Chengdu: summary of the 1st international conference on duckweed application and research. Plant Mol Biol 78:627–632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Walter Laemmler, Landolt Lemnacae Collection Zurich for his support and the German Research Foundation, Bonn, Germany for supporting this project (AP 54/10-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-J. Appenroth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2012_1777_MOESM1_ESM.xlsx

Supplementary material 1. Results of the amplified fragment length polymorphism of all clones of the genus Wolffia. Clone number, species names, PCR primer combinations, and size of the evaluated fragments (bp) are given (XLSX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bog, M., Schneider, P., Hellwig, F. et al. Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid. (Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 237, 1–13 (2013). https://doi.org/10.1007/s00425-012-1777-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1777-9

Keywords

Navigation