Advertisement

Planta

, Volume 237, Issue 2, pp 529–540 | Cite as

The first α-helical domain of the vesicle-inducing protein in plastids 1 promotes oligomerization and lipid binding

  • Stephanie Otters
  • Paula Braun
  • Johanna Hubner
  • Gerhardt Wanner
  • Ute C. VothknechtEmail author
  • Fatima Chigri
Original Article

Abstract

The vesicle-inducing protein in plastids 1 (Vipp1) is an essential component for thylakoid biogenesis in cyanobacteria and chloroplasts. Vipp1 proteins share significant structural similarity with their evolutionary ancestor PspA (bacterial phage shock protein A), namely a predominantly α-helical structure, the formation of oligomeric high molecular weight complexes (HMW-Cs) and a tight association with membranes. Here, we elucidated domains of Vipp1 from Arabidopsis thaliana involved in homo-oligomerization as well as association with chloroplast inner envelope membranes. We could show that the 21 N-terminal amino acids of Vipp1, which form the first α-helix of the protein, are essential for assembly of the 2 MDa HMW-C but are not needed for formation of smaller subcomplexes. Interestingly, removal of this domain also interferes with association of the Vipp1 protein to the inner envelope. Fourier transform infrared spectroscopy of recombinant Vipp1 further indicates that Escherichia coli lipids bind tightly enough that they can be co-purified with the protein. This feature also depends on the presence of the first helix, which strongly supports an interaction of lipids with the Vipp1 HMW-C but not with smaller subcomplexes. Therefore, Vipp1 oligomerization appears to be a prerequisite for its membrane association. Our results further highlight structural differences between Vipp1 and PspA, which might be important in regard to their different function in thylakoid biogenesis and bacterial stress response, respectively.

Keywords

Lipid binding Protein complex formation PspA Thylakoid biogenesis Vipp1 

Abbreviations

ATR-FTIR

Attenuated total reflectance Fourier transform infrared spectroscopy

EM

Electron microscopy

HMW-C

High molecular weight complex

PspA

Phage shock protein A

SEC

Size exclusion chromatography

Vipp1

Vesicle-inducing protein in plastids 1

Notes

Acknowledgments

This work was supported by grants from the Deutsche Forschungsgemeinschaft to UCV (SFB-TR1, project A6) and PB (BR-1991/2-1).

Supplementary material

425_2012_1772_MOESM1_ESM.pdf (12.6 mb)
Supplementary material 1 (PDF 12893 kb)

References

  1. Adam Z, Charuvi D, Tsabari O, Knopf R, Reich Z (2011) Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. Plant Mol Biol 76:221–234PubMedCrossRefGoogle Scholar
  2. Adams H, Teertstra W, Demmers J, Boesten R, Tommassen J (2003) Interactions between phage-shock proteins in Escherichia coli. J Bacteriol 185:1174–1180PubMedCrossRefGoogle Scholar
  3. Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5:40PubMedCrossRefGoogle Scholar
  4. Aseeva E, Ossenbuhl F, Eichacker LA, Wanner G, Soll J, Vothknecht UC (2004) Complex formation of Vipp 1 depends on its alpha-helical PspA-like domain. J Biol Chem 279:35535–35541PubMedCrossRefGoogle Scholar
  5. Aseeva E, Ossenbuhl F, Sippel C, Cho WK, Stein B, Eichacker LA, Meurer J, Wanner G, Westhoff P, Soll J, Vothknecht UC (2007) Vipp 1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiol Biochem 45:119–128PubMedCrossRefGoogle Scholar
  6. Benning C (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu Rev Cell Dev Biol 25:71–91PubMedCrossRefGoogle Scholar
  7. Bergler H, Abraham D, Aschauer H, Turnowsky F (1994) Inhibition of lipid biosynthesis induces the expression of the pspA gene. Microbiology 140:1937–1944PubMedCrossRefGoogle Scholar
  8. Blume A, Hubner W, Messner G (1988) Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 27:8239–8249Google Scholar
  9. Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 87:862–866PubMedCrossRefGoogle Scholar
  10. Bultema JB, Fuhrmann E, Boekema EJ, Schneider D (2010) Vipp 1 and PspA: related but not twins. Commun Integr Biol 3:162–165PubMedCrossRefGoogle Scholar
  11. Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201PubMedCrossRefGoogle Scholar
  12. Combet C, Blanchet C, Geourjon C, Deleage G (2000) NPS@: network protein sequence analysis. Trends Biochem Sci 25:147–150PubMedCrossRefGoogle Scholar
  13. DeLisa MP, Lee P, Palmer T, Georgiou G (2004) Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J Bacteriol 186:366–373PubMedCrossRefGoogle Scholar
  14. Elderkin S, Bordes P, Jones S, Rappas M, Buck M (2005) Molecular determinants for PspA-mediated repression of the AAA transcriptional activator PspF. J Bacteriol 187:3238–3248PubMedCrossRefGoogle Scholar
  15. Frishman D, Argos P (1996) Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng 9:133–142PubMedCrossRefGoogle Scholar
  16. Fuhrmann E, Bultema JB, Kahmann U, Rupprecht E, Boekema EJ, Schneider D (2009a) The vesicle-inducing protein 1 from Synechocystis sp. PCC 6803 organizes into diverse higher-ordered ring structures. Mol Biol Cell 20:4620–4628PubMedCrossRefGoogle Scholar
  17. Fuhrmann E, Gathmann S, Rupprecht E, Golecki J, Schneider D (2009b) Thylakoid membrane reduction affects the photosystem stoichiometry in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 149:735–744PubMedCrossRefGoogle Scholar
  18. Gao H, Xu X (2009) Depletion of Vipp 1 in Synechocystis sp. PCC 6803 affects photosynthetic activity before the loss of thylakoid membranes. FEMS Microbiol Lett 292:63–70PubMedCrossRefGoogle Scholar
  19. Garnier J, Gibrat JF, Robson B (1996) GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 266:540–553PubMedCrossRefGoogle Scholar
  20. Hankamer BD, Elderkin SL, Buck M, Nield J (2004) Organization of the AAA(+) adaptor protein PspA is an oligomeric ring. J Biol Chem 279:8862–8866PubMedCrossRefGoogle Scholar
  21. Jakob-Grun S, Radek J, Braun P (2012) Ca2+-binding reduces conformational flexibility of RC–LH1 core complex from thermophile Thermochromatium tepidum. Photosynth Res 111:139–147PubMedCrossRefGoogle Scholar
  22. Joly N, Burrows PC, Engl C, Jovanovic G, Buck M (2009) A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. J Mol Biol 394:764–775PubMedCrossRefGoogle Scholar
  23. Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M (2010) Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 34:797–827PubMedGoogle Scholar
  24. Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202PubMedCrossRefGoogle Scholar
  25. Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654PubMedCrossRefGoogle Scholar
  26. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371PubMedCrossRefGoogle Scholar
  27. Kleerebezem M, Tommassen J (1993) Expression of the pspA gene stimulates efficient protein export in Escherichia coli. Mol Microbiol 7:947–956PubMedCrossRefGoogle Scholar
  28. Kleerebezem M, Crielaard W, Tommassen J (1996) Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the proton motive force under stress conditions. EMBO J 15:162–171PubMedGoogle Scholar
  29. Kobayashi R, Suzuki T, Yoshida M (2007) Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 66:100–109PubMedCrossRefGoogle Scholar
  30. Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98:4238–4242PubMedCrossRefGoogle Scholar
  31. Lewis RN, McElhaney RN, Pohle W, Mantsch HH (1994) Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayers: a reevaluation. Biophys J 67:2367–2375Google Scholar
  32. Li HM, Kaneko Y, Keegstra K (1994) Molecular cloning of a chloroplastic protein associated with both the envelope and thylakoid membranes. Plant Mol Biol 25:619–632PubMedCrossRefGoogle Scholar
  33. Liu C, Willmund F, Whitelegge JP, Hawat S, Knapp B, Lodha M, Schroda M (2005) J-domain protein CDJ2 and HSP70B are a plastidic chaperone pair that interacts with vesicle-inducing protein in plastids 1. Mol Biol Cell 16:1165–1177PubMedCrossRefGoogle Scholar
  34. Liu CM, Willmund F, Golecki JR, Cacace S, Hess B, Markert C, Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J 50:265–277PubMedCrossRefGoogle Scholar
  35. Nordhues A, Schottler MA, Unger AK, Geimer S, Schonfelder S, Schmollinger S, Rutgers M, Finazzi G, Soppa B, Sommer F, Muhlhaus T, Roach T, Krieger-Liszkay A, Lokstein H, Crespo JL, Schroda M (2012) Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas. Plant Cell 24:637–659PubMedCrossRefGoogle Scholar
  36. Sakamoto W, Miyagishima SY, Jarvis P (2008) Chloroplast biogenesis: control of plastid development, protein import, division and inheritance. Arabidopsis Book 6:e0110PubMedGoogle Scholar
  37. Vothknecht UC, Westhoff P (2001) Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta 1541:91–101PubMedCrossRefGoogle Scholar
  38. Vothknecht UC, Otters S, Hennig R, Schneider D (2011) Vipp 1: a very important protein in plastids?! J Exp Bot 63:1699–1712PubMedCrossRefGoogle Scholar
  39. Waegemann K, Soll J (1991) Characterization of the protein import apparatus in isolated outer envelopes of chloroplasts. Plant J 1:149–158CrossRefGoogle Scholar
  40. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143PubMedCrossRefGoogle Scholar
  41. Westphal S, Heins L, Soll J, Vothknecht UC (2001a) Vipp 1 deletion mutant of Synechocystis: a connection between bacterial phage shock and thylakoid biogenesis? Proc Natl Acad Sci USA 98:4243–4248PubMedCrossRefGoogle Scholar
  42. Westphal S, Soll J, Vothknecht UC (2001b) A vesicle transport system inside chloroplasts. FEBS Lett 506:257–261PubMedCrossRefGoogle Scholar
  43. Zhang L, Kato Y, Otters S, Vothknecht UC, Sakamoto W (2012) Essential Role of VIPP1 in Chloroplast Envelope Maintenance in Arabidopsis. Plant Cell. http://dx.doi.org/10.1105/tpc.112.103606

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stephanie Otters
    • 1
  • Paula Braun
    • 3
  • Johanna Hubner
    • 1
  • Gerhardt Wanner
    • 1
  • Ute C. Vothknecht
    • 1
    • 2
    Email author
  • Fatima Chigri
    • 2
  1. 1.Department of Biology I, BotanyLMU MunichMunichGermany
  2. 2.Center for Integrated Protein Science (Munich) at the Department of BiologyLMU MunichMunichGermany
  3. 3.Munich University of Applied SciencesMunichGermany

Personalised recommendations