Skip to main content
Log in

Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO3 ) uptake and metabolism. We investigated inducible high-affinity NO3 uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 μM): the activity and gene transcript abundance of high-affinity NO3 transporters, NO3 reductases and PM H+-ATPases were analyzed. Exposure to 1 mM NO3 led to a peak in high-affinity (0.2 mM) NO3 uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H+-ATPase activity was also strongly limited, while internal NO3 accumulation and NO3 reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO3 uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO3 transporters (ZmNTR2.1, ZmNRT2.2), PM H+-ATPases (ZmMHA3, ZmMHA4) and NO3 reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO3 demand, a negative effect of Cd on NO3 nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO3 uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO3 availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

GDH:

Glutamate dehydrogenase

NO3 :

Nitrate

NR:

Nitrate reductase

PM:

Plasma membrane

SO4 2− :

Sulfate

References

  • Astolfi S, Zuchi S, Passera C (2004) Role of sulphur availability on cadmium-induced changes of nitrogen and sulphur metabolism in maize (Zea mays L.) leaves. J Plant Physiol 161:795–802

    Article  PubMed  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Passera C (2005) Effect of cadmium on H+ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants. Plant Sci 169:361–368

    Article  CAS  Google Scholar 

  • Boussama N, Ouariti O, Ghorbal MH (1999a) Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. J Plant Nutr 22:731–752

    Article  CAS  Google Scholar 

  • Boussama N, Ouariti O, Suzuki A, Ghorbal MH (1999b) Cd-stress on nitrogen assimilation. J Plant Physiol 155:310–317

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2002) NH4 + toxicity in higher plants: a critical review. J Plant Physiol 159:567–584

    Article  CAS  Google Scholar 

  • Campbell WH (1992) Expression in Escherichia coli of cytochrome-C reductase activity from a maize NADH nitrate reductase complementary-DNA. Plant Physiol 99:693–699

    Article  PubMed  CAS  Google Scholar 

  • Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  PubMed  CAS  Google Scholar 

  • Clarkson DT, Saker LR, Purves JV (1989) Depression of nitrate and ammonium transport in barley plants with diminished sulfate status—evidence of co-regulation of nitrogen and sulfate intake. J Exp Bot 40:953–963

    Article  CAS  Google Scholar 

  • Clarkson DT, Diogo E, Amancio S (1999) Uptake and assimilation of sulphate by sulphur deficient Zea mays cells: the role of O-acetyl-l-serine in the interaction between nitrogen and sulphur assimilatory pathways. Plant Physiol Biochem 37:283–290

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi UN, Shiraishi N, Campbell WH (1994) Identification of an essential cysteine of nitrate reductase via mutagenesis of its recombinant cytochrome-B reductase domain. J Biol Chem 269:13785–13791

    PubMed  CAS  Google Scholar 

  • Finkemeier I, Kluge C, Metwally A, Georgi M, Grotjohann N, Dietz KJ (2003) Alterations in Cd-induced gene expression under nitrogen deficiency in Hordeum vulgare. Plant Cell Environ 26:821–833

    Article  PubMed  CAS  Google Scholar 

  • Forbush B (1983) Assay of Na, K-ATPase in plasma membrane preparations: increasing the permeability of membrane vesicles using sodium dodecyl sulfate buffered with bovine serum albumin. Anal Biochem 128:159–163

    Article  PubMed  CAS  Google Scholar 

  • Fraisier V, Gojon A, Tillard P, Daniel-Vedele F (2000) Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J 23:489–496

    Article  PubMed  CAS  Google Scholar 

  • Gogstad GO, Krutnes MB (1982) Measurement of protein in cell-suspensions using the coomassie brilliant blue dye-binding assay. Anal Biochem 126:355–359

    Article  PubMed  CAS  Google Scholar 

  • Gouia H, Ghorbal MH, Meyer C (2000) Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol Biochem 38:629–638

    Article  CAS  Google Scholar 

  • Gouia H, Suzuki A, Brulfert J, Ghorbal MH (2003) Effects of cadmium on the co-ordination of nitrogen and carbon metabolism in bean seedlings. J Plant Physiol 160:367–376

    Article  PubMed  CAS  Google Scholar 

  • Gowri G, Ingemarsson B, Redinbaugh MG, Campbell WH (1992) Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate. Plant Mol Biol 18:55–64

    Article  PubMed  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J Exp Bot 48:1375–1381

    Article  CAS  Google Scholar 

  • Hernandez LE, Garate A, CarpenaRuiz R (1997) Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil 189:97–106

    Article  CAS  Google Scholar 

  • Hogh-Jensen H, Wollenweber B, Schjoerring JK (1997) Kinetics of nitrate and ammonium absorption and accompanying H+ fluxes in roots of Lolium perenne L. and N2-fixing Trifolium repens L. Plant Cell Environ 20:1184–1192

    Article  CAS  Google Scholar 

  • Hole DJ, Emran AM, Fares Y, Drew MC (1990) Induction of nitrate transport in maize roots, and kinetics of influx, measured with nitrogen-13. Plant Physiol 93:642–647

    Article  PubMed  CAS  Google Scholar 

  • Hyde GE, Campbell WH (1990) High-level expression in Escherichia coli of the catalytically active flavin domain of corn leaf NADH-nitrate reductase and its comparison to human NADH-cytochrome-B5 reductase. Biochem Biophys Res Commun 168:1285–1291

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa S, Ito Y, Sato Y, Fukaya Y, Takahashi M, Morikawa H, Ohtake N, Ohyama T, Sueyoshi K (2009) Two-component high-affinity nitrate transport system in barley: membrane localization, protein expression in roots and a direct protein–protein interaction. Plant Biotechnol 26:197–205

    Article  CAS  Google Scholar 

  • Katayama H, Mori M, Kawamura Y, Tanaka T, Mori M, Hasegawa H (2009) Production and characterization of transgenic rice plants carrying a high-affinity nitrate transporter gene (OsNRT2.1). Breeding Sci 59:237–243

    Article  CAS  Google Scholar 

  • Kotur Z, Mackenzie N, Ramesh S, Tyerman SD, Kaiser BN, Glass ADM (2012) Nitrate transport capacity of the Arabidopsis thaliana NRT2 family members and their interactions with AtNAR2.1. New Phytol 194:724–731

    Article  PubMed  CAS  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee SY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    Article  PubMed  CAS  Google Scholar 

  • Lewis OAM, Watson EF, Hewitt EJ (1982) Determination of nitrate reductase activity in barley leaves and roots. Ann Bot 49:31–37

    CAS  Google Scholar 

  • Li WB, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 61:1633–1646

    Google Scholar 

  • Little DY, Rao HY, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Nat Acad Sci USA 102:13693–13698

    Article  PubMed  CAS  Google Scholar 

  • Loque D, Tillard P, Gojon A, Lepetit M (2003) Gene expression of the NO3 transporter NRT1.1 and the nitrate reductase NIA1 is repressed in Arabidopsis roots by NO2 , the product of NO3 reduction. Plant Physiol 132:958–967

    Article  PubMed  CAS  Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990a) Evidence for cotransport of nitrate and protons in maize roots: I. effects of nitrate on the membrane potential. Plant Physiol 93:281–289

    Article  PubMed  CAS  Google Scholar 

  • McClure PR, Kochian LV, Spanswick RM, Shaff JE (1990b) Evidence for cotransport of nitrate and protons in maize roots: II. measurement of NO3 and H+ fluxes with ion-selective microelectrodes. Plant Physiol 93:290–294

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854

    Article  CAS  Google Scholar 

  • Miller AJ, Fan XR, Orsel M, Smith SJ, Wells DM (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306

    Article  PubMed  CAS  Google Scholar 

  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmium-induced sulfate uptake in maize roots. Plant Physiol 129:1872–1879

    Article  PubMed  CAS  Google Scholar 

  • Nocito FF, Espen L, Crema B, Cocucci M, Sacchi GA (2008) Cadmium induces acidosis in maize root cells. New Phytol 179:700–711

    Article  PubMed  Google Scholar 

  • Okamoto M, Kumar A, Li WB, Wang Y, Siddiqi MY, Crawford NM, Glass ADM (2006) High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140:1036–1046

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Eulenburg K, Krapp A, Daniel-Vedele F (2004) Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restricts growth at low external nitrate concentration. Planta 219:714–721

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Chopin F, Leleu O, Smith SJ, Krapp A, Daniel-Vedele F, Miller AJ (2006) Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein–protein interaction. Plant Physiol 142:1304–1317

    Article  PubMed  CAS  Google Scholar 

  • Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35:347–354

    CAS  Google Scholar 

  • Pinton R, Cesco S, Iacolettig G, Astolfi S, Varanini Z (1999) Modulation of NO3 uptake by water-extractable humic substances: involvement of root plasma membrane H+ATPase. Plant Soil 215:155–161

    Article  CAS  Google Scholar 

  • Prosser IM, Purves JV, Saker LR, Clarkson DT (2001) Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. J Exp Bot 52:113–121

    Article  PubMed  CAS  Google Scholar 

  • Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    Article  PubMed  CAS  Google Scholar 

  • Ritz C, Spiess AN (2008) qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reaction analysis. Bioinformatics 24:1549–1551

    Article  PubMed  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Santi S, Locci G, Pinton R, Cesco S, Varanini Z (1995) Plasma-membrane H+-ATPase in maize roots induced for NO3 uptake. Plant Physiol 109:1277–1283

    PubMed  CAS  Google Scholar 

  • Santi S, Locci G, Monte R, Pinton R, Varanini Z (2003) Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot 54:1851–1864

    Article  PubMed  CAS  Google Scholar 

  • Segel IH (1976) Enzymes. Biochemical calculations: how to solve mathematical problems in general biochemistry, 2nd edn. Wiley, Inc., New York, p 208–323

  • Siddiqi MY, Glass ADM, Ruth TJ, Rufty TW (1990) Studies of the uptake of nitrate in barley: I. kinetics of 13NO3 influx. Plant Physiol 93:1426–1432

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  PubMed  CAS  Google Scholar 

  • Tomasi N, Kretzschmar T, Espen L, Weisskopf L, Fuglsang AT, Palmgren MG, Neumann G, Varanini Z, Pinton R, Martinoia E, Cesco S (2009) Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell Environ 32:465–475

    Article  PubMed  CAS  Google Scholar 

  • Tong Y, Zhou JJ, Li ZS, Miller AJ (2005) A two-component high-affinity nitrate uptake system in barley. Plant J 41:442–450

    Article  PubMed  CAS  Google Scholar 

  • Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S (2008) Expression of two maize putative nitrate transporters in response to nitrate and sugar availability. Plant Biol 10:462–475

    Article  PubMed  CAS  Google Scholar 

  • Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass ADM (2000) Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiol 123:307–318

    Article  PubMed  CAS  Google Scholar 

  • Wirth J, Chopin F, Santoni V, Viennois G, Tillard P, Krapp A, Lejay L, Daniel-Vedele F, Gojon A (2007) Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. J Biol Chem 282:23541–23552

    Article  PubMed  CAS  Google Scholar 

  • Yan M, Fan XR, Feng HM, Miller AJ, Shen QR, Xu GH (2011) Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration ranges. Plant Cell Environ 34:1360–1372

    Article  PubMed  CAS  Google Scholar 

  • Yong Z, Kotur Z, Glass ADM (2010) Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J 63:739–748

    Article  PubMed  CAS  Google Scholar 

  • Zuchi S, Cesco S, Varanini Z, Pinton R, Astolfi S (2009) Sulphur deprivation limits Fe-deficiency responses in tomato plants. Planta 230:85–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministero Italiano dell’Istruzione, dell’Università e della Ricerca (MIUR-PRIN), Regione Friuli-Venezia Giulia (LR 26/05), Regione Lombardia (Fondo per la Promozione di Accordi Istituzionali, project BIOGESTECA 15083/RCC). The manuscript greatly benefited from the detailed and constructive criticism of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pinton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzardo, C., Tomasi, N., Monte, R. et al. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Planta 236, 1701–1712 (2012). https://doi.org/10.1007/s00425-012-1729-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1729-4

Keywords

Navigation