Skip to main content
Log in

Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plants have evolved various mechanisms for detoxification that are specific to the plant species as well as the metal ion chemical properties. Malic acid, which is commonly found in plants, participates in a number of physiological processes including metal chelation. Using natural variation among Arabidopsis accessions, we investigated the function of malic acid in Nickel (Ni) tolerance and detoxification. The Ni-induced production of reactive oxygen species was found to be modulated by intracellular malic acid, indicating its crucial role in Ni detoxification. Ni tolerance in Arabidopsis may actively involve malic acid and/or complexes of Ni and malic acid. Investigation of malic acid content in roots among tolerant ecotypes suggested that a complex of Ni and malic acid may be involved in translocation of Ni from roots to leaves. The exudation of malic acid from roots in response to Ni treatment in either susceptible or tolerant plant species was found to be partially dependent on AtALMT1 expression. A lower concentration of Ni (10 µM) treatment induced AtALMT1 expression in the Ni-tolerant Arabidopsis ecotypes. We found that the ecotype Santa Clara (S.C.) not only tolerated Ni but also accumulated more Ni in leaves compared to other ecotypes. Thus, the ecotype S.C. can be used as a model system to delineate the biochemical and genetic basis of Ni tolerance, accumulation, and detoxification in plants. The evolution of Ni hyperaccumulators, which are found in serpentine soils, is an interesting corollary to the fact that S.C. is also native to serpentine soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asemaneh T, Ghaderian S, Crawford S, Marshall A, Baker A (2006) Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta 225:193–202

    Article  PubMed  CAS  Google Scholar 

  • Assunção AGL, Bookum WM, Nelissen HJM, Vooijs R, Schat H et al (2003) Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytol 159:411–419

    Article  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. pp 85–107. In: Terry N, Bañuelos GS (eds) Phytoremediation of Contaminated Soil and Water CRC Press. Boca Raton, FL, p 389

    Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  Google Scholar 

  • Boyd RS, Jaffre T (2001) Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. S Afr J Sci 97:535–538

    CAS  Google Scholar 

  • Boyd RS, Martens SN (1998) Nickel hyperaccumulation by Thlaspi montanum var. montanum (Brassicaceae): a constitutive trait. Am J Bot 85:259–265

    Article  PubMed  CAS  Google Scholar 

  • Brooks RR, Shaw S, Marfil AA (1981) Some observations on the ecology, metal uptake and Nickel tolerance of Alyssum serpyllifolium subspecies from the Iberian peninsula. Vegetation 45:183–188

    Article  Google Scholar 

  • Callahan DL, Roessner U, Dumontet V, Perrier N, Wedd AG et al (2008) LC-MS and GC-MS metabolite profiling of nickel (II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel (II) ligand. Phytochemistry 69:240–251

    Article  PubMed  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV et al (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Boyd RS, Cane JH (2001) Host-switching does not circumvent the Ni-based defence of the Ni hyperaccumulator Streptanthus polygaloides (Brassicaceae). S Afr J Sci 97:554–557

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T et al (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Eskew DL, Welch RM, Cary EE (1983) Nickel: an essential micronutrient for legumes and possibly all higher plants. Science 222:621–623

    Article  PubMed  CAS  Google Scholar 

  • Eskew DL, Welch RM, Norvell WA (1984) Nickel in higher plants: further evidence for an essential role. Plant Physiol 76:691–693

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JH, Mylona P, Miedema H et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  PubMed  CAS  Google Scholar 

  • Hao FS, Wang XC, Chen J (2006) Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170:151–158

    Article  CAS  Google Scholar 

  • Homer FA, Reeves RD, Brooks RR, Baker AJM (1991) Characterization of the nickel-rich extract from the nickel hyperaccumulator Dichapetalum gelonioides. Phytochemistry 30:2141–2145

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kerkeb L, Kramer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  PubMed  CAS  Google Scholar 

  • Kersten WJ, Brooks RR, Reeves RD, Jaffré A (1980) Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants. Phytochemistry 19:1963–1965

    Article  CAS  Google Scholar 

  • Kobayashi Y, Hoekenga OA, Itoh H, Nakashima M, Saito S et al (2007) Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis. Plant Physiol 145:843–852

    Article  PubMed  CAS  Google Scholar 

  • Kramer U, CotterHowells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  CAS  Google Scholar 

  • Krupa Z, Siedlecka A, Maksymiec W, Baszynski T (1993) In vivo response of photosynthetic apparatus of Phaseolus-Vulgaris L to nickel toxicity. J Plant Physiol 142:664–668

    Article  CAS  Google Scholar 

  • Kupper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Article  PubMed  CAS  Google Scholar 

  • Lalah JO, Njogu SN, Wandiga SO (2009) The effects of Mn2+, Ni, Cu2+, Co2+ and Zn2+ Ions on pesticide adsorption and mobility in a tropical soil. Bull Environ ContamToxicol 83:352–358

    Article  CAS  Google Scholar 

  • Lee J, Reeves RD, Brooks RR, Jaffré T (1977) Isolation and identification of a citrato-complex of nickel from nickel-accumulating plants. Phytochem 16:1503–1505

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic, Boston

    Google Scholar 

  • McNear DH, Chaney RL, Sparks DL (2010) The hyperaccumulator Alyssum murale uses complexation with nitrogen and oxygen donor ligands for Ni transport and storage. Phytochemistry 71:188–200

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  PubMed  CAS  Google Scholar 

  • Montargès-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A et al (2008) Identification of nickel chelators in three hyperaccumulating plants: An X-ray spectroscopic study. Phytochemistry 69:1695–1709

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy A, Taiz L (1995) A new vertical mesh transfer technique for metal-tolerance studies in Arabidopsis. Plant Physiol 108:29–38

    PubMed  CAS  Google Scholar 

  • Nieminen TM, Ukonmaanaho L, Rausch N, Shotyk W (2007) Biogeochemistry of nickel and its release into the environment. Met Ions Life Sci 2:1–30

    CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Pelosi P, Fiorentini R, Galoppini C (1976) On the nature of nickel compounds Allysum bertolonii Desv. Agric Biol Chem 40:1641

    Article  CAS  Google Scholar 

  • Perrier N, Colin F, Jaffré T, Ambrosi J-P, Rose J et al (2004) Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia. Comptes Rendus Geosci 336:567–577

    Article  CAS  Google Scholar 

  • Pilon-Smits EAH, Freeman JL (2006) Environmental cleanup using plants: biotechnological advances and ecological considerations. Front Ecol Environ 4:203–210

    Article  Google Scholar 

  • Plette ACC, Nederlof MM, Temminghoff EJM, van Riemsdijk WH (1999) Bioavailability of heavy metals in terrestrial and aquatic systems: a quantitative approach. Environ Toxicol Chem 18:1882–1890

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404

    Article  CAS  Google Scholar 

  • Reeves RD (1992) The hyperaccumulation of nickel by serpentine plants. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover, pp 253–277

    Google Scholar 

  • Reeves RD, Baker AJM (1984) Studies on metal uptake by plants from serpentine and non-serpentine populations of Thlaspi goesingense Halacsy (Cruciferae). New Phytol 98:191–204

    Article  CAS  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson J-P, Deus-Neumann B et al (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347

    Article  PubMed  CAS  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Schaumloffel D, Schroeder WH, Marcus MA, Geoffroy N, Manceau A (2003) Speciation analysis of nickel in the latex of a hyper-accumulating tree Sebertia accuminata by HPLC and CZE with ICP-MS and electrospray MS–MS detection. J Anal At Spectrom 18:120–127

    Article  Google Scholar 

  • Seregin I, Kozhevnikova A (2006) Physiological role of nickel and its toxic effects on higher plants. Rus J Plant Physiol 53:257–277

    Article  CAS  Google Scholar 

  • Shaw AJ (1991) Ecological genetics of serpentine tolerance in the moss, Funaria flavicans variation within and among haploid sib families. Am J Bot 78:1487–1493

    Article  Google Scholar 

  • Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Ann Bot 99:1043–1054

    Article  PubMed  CAS  Google Scholar 

  • Somerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3:883–889

    Article  PubMed  CAS  Google Scholar 

  • Sun E-J, Wu F-Y (1998) Along-vein necrosis as indicator symptom on water spinach caused by nickel in water culture. Bot Bull Acad Sin 39:255–259

    CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to Aluminum. Plant Physiol 127:1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Westerbergh A (1994) Serpentine and non-serpentine Silene dioica plants do not differ in nickel tolerance. Plant Soil 167:297–303

    Article  CAS  Google Scholar 

  • Wilkins DA (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H.P.B. acknowledges the support from NSF EPSCoR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harsh P. Bais.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, B., Lakshmanan, V., Kaushik, S. et al. Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance. Planta 236, 477–489 (2012). https://doi.org/10.1007/s00425-012-1621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1621-2

Keywords

Navigation