Skip to main content
Log in

Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2012


A mung bean (Vigna radiata) pectin acetyl esterase (CAA67728) was heterologously expressed in tubers of potato (Solanum tuberosum) under the control of the granule-bound starch synthase promoter or the patatin promoter in order to probe the significance of O-acetylation on cell wall and tissue properties. The recombinant tubers showed no apparent macroscopic phenotype. The enzyme was recovered from transgenic tubers using a high ionic strength buffer and the extract was active against a range of pectic substrates. Partial in vivo de-acetylation of cell wall polysaccharides occurred in the transformants, as shown by a 39% decrease in the degree of acetylation (DA) of tuber cell wall material (CWM). Treatment of CWM using a combination of endo-polygalacturonase and pectin methyl esterase extracted more pectin polymers from the transformed tissue compared to wild type. The largest effect of the pectin acetyl esterase (68% decrease in DA) was seen in the residue from this extraction, suggesting that the enzyme is preferentially active on acetylated pectin that is tightly bound to the cell wall. The effects of acetylation on tuber mechanical properties were investigated by tests of failure under compression and by determination of viscoelastic relaxation spectra. These tests suggested that de-acetylation resulted in a stiffer tuber tissue and a stronger cell wall matrix, as a result of changes to a rapidly relaxing viscoelastic component. These results are discussed in relation to the role of pectin acetylation in primary cell walls and its implications for industrial uses of potato fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others



Analysis of variance


Cell wall material


Degree of acetylation expressed as mol HOAc/mol UA × 100




Granule-bound starch synthase




Acetic acid




Pectin acetyl esterase




Pectin methyl esterase


p-Nitrophenol acetate




Uronic acid


Relaxation time


  • Abasolo W, Yamauchi K, Reinecke A, Neumetzler L, Dunlop JWC, Mouille G, Pauly M, Burgert I (2009) Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2:990–999

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman V, Aravind L (2010) Novel eukaryotic enzymes modifying cell-surface biopolymers. Biol Direct 5:1–8

    Article  PubMed  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for the quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  PubMed  CAS  Google Scholar 

  • Bolvig PU, Pauly M, Orfila C, Scheller HV, Schnorr K (2003) Sequence analysis and characterisation of a novel pectin acetyl esterase from Bacillus subtilis. In: Voragen A, Schols H, Visser R (eds) Advances in pectins and pectinase research. Kluwer Academic Publishers, Dordrecht, pp 315–330

    Google Scholar 

  • Bonnin E, Le Goff A, van Alebeek GJWM, Voragen AGJ, Thibault JF (2003) Mode of action of Fusarium moniliforme endopolygalacturonase towards acetylated pectin. Carbohydr Polym 52:381–388

    Article  CAS  Google Scholar 

  • Bonnin E, Clavurier K, Daniel S, Kauppinen S, Mikkelsen JDM, Thibault JF (2008) Pectin acetylesterases from Aspergillus are able to deacetylate homogalacturonan as well as rhamnogalacturonan. Carbohydr Polym 74:411–418

    Article  CAS  Google Scholar 

  • Bordenave M, Goldberg R, Huet JC, Pernollet JC (1995) A novel protein from mung bean hypocotyl cell walls with acetyl esterase activity. Phytochemistry 38:315–319

    Article  PubMed  CAS  Google Scholar 

  • Bordenave M, Breton C, Goldberg R, Huet JC, Perez S, Pernollet JC (1996) Pectinmethylesterase isoforms from Vigna radiata hypocotyl cell walls: Kinetic properties and molecular cloning of a cDNA encoding the most alkaline isoform. Plant Mol Biol 31:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Breton C, Bordenave M, Richard L, Pernollet JC, Huet JC, Perez S, Goldberg R (1996) PCR cloning and expression analysis of a cDNA encoding a pectinacetylesterase from Vigna radiata L. FEBS Lett 388:139–142

    Article  PubMed  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed  CAS  Google Scholar 

  • Christensen TMIE, Nielsen JE, Mikkelsen JD (1996) Isolation, characterization and immunolocalization of orange fruit acetyl esterase. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Wageningen Academic Publishers, Wageningen, pp 723–730

    Chapter  Google Scholar 

  • Ducreux LJM, Morris WL, Prosser IM, Morris JA, Beale MH, Wright F, Shepherd T, Bryan GJ, Hedley PE, Taylor MA (2008) Expression profiling of potato germplasm differentiated in quality traits leads to the identification of candidate flavour and texture genes. J Exp Bot 59:4219–4231

    Article  PubMed  CAS  Google Scholar 

  • Edwards GA, Hepher A, Clerk SP, Boulter D (1991) Pea lectin is correctly processed, stable and active in leaves of transgenic potato plants. Plant Mol Biol 17:89–100

    Article  PubMed  CAS  Google Scholar 

  • Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197

    Article  PubMed  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, NY

    Google Scholar 

  • Hansen S, Ray P, Karlsson A, Jørgensen B, Borkhardt B, Petersen B, Ulvskov P (2011) Mechanical properties of plant cell walls probed by relaxation spectra. Plant Physiol 122:246–258

    Article  Google Scholar 

  • Ishii T (1997) O-acetylated oligosaccharides from pectins of potato tuber cell walls. Plant Physiol 113:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MC (2011) Plant cell walls: supramolecular assemblies. Food Hydrocoll 25:257–262

    Article  CAS  Google Scholar 

  • Jarvis MC, Threlfall DR, Friend J (1981) Potato cell wall polysaccharides—degradation with enzymes from Phytophthora infestans. J Exp Bot 32:1309–1319

    Article  CAS  Google Scholar 

  • Kabel MA, van den Borne H, Vincken JP, Voragen AGJ, Schols HA (2007) Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 69:94–105

    Article  CAS  Google Scholar 

  • Kauppinen S, Christgau S, Kofod LV, Halkier T, Dorreich K, Dalboge H (1995) Molecular cloning and characterization of a rhamnogalacturonan acetyl esterase from Aspergillus aculeatus—synergism between rhamnogalacturonan degrading enzymes. J Biol Chem 270:27172–27178

    Article  PubMed  CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons B, Blanch H (2010) Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenergy 34:1914–1921

    Article  CAS  Google Scholar 

  • Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S, Rautengarten C, Cherk C, Marcus SE, Somerville S, Pauly M, Knox JP, Sakuragi Y, Scheller HV (2011) Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol 155:1068–1078

    Article  PubMed  CAS  Google Scholar 

  • Mohamed SA, Christensen TMIE, Mikkelsen JD (2003) New polygalacturonases from Trichoderma reesei: characterization and their specificities to partially methylated and acetylated pectins. Carbohydr Res 338:515–524

    Article  PubMed  CAS  Google Scholar 

  • Øbro J, Harholt J, Scheller HV, Orfila C (2004) Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry 65:1429–1438

    Article  PubMed  Google Scholar 

  • Øbro J, Hayashi T, Mikkelsen JD (2010) Enzymatic modification of plant cell wall polysaccharides. In: Ulvskov P (ed) Annual plant reviews: plant polysaccharides—biosynthesis and bioengineering, vol 41. Blackwell Publishing, Chichester, pp 367–387

  • Oikawa A, Joshi HJ, Rennie EA, Ebert B, Manisseri C, Heazlewood JL, Scheller HV (2010) An integrative approach to the identification of Arabidopsis and rice genes involved in xylan and secondary wall development. Plos One 5:15481

    Article  Google Scholar 

  • Orfila C, Seymour GB, Willats WGT, Huxham IM, Jarvis MC, Dover CJ, Thompson AJ, Knox JP (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1 - > 5)-alpha-l-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol 126:210–221

    Article  PubMed  CAS  Google Scholar 

  • Orfila C, Huisman MMH, Willats WGT, van Alebeek GJWM, Schols HA, Seymour GB, Knox JP (2002) Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440–447

    Article  PubMed  CAS  Google Scholar 

  • Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Ndong YA, Pelloux J, Bischoff V, Urbain A, Mouille G, Lemonnier G, Renou JP, Hofte H (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188:726–739

    Article  PubMed  CAS  Google Scholar 

  • Pilling J, Willmitzer L, Fisahn J (2000) Expression of a Petunia inflata pectin methyl esterase in Solanum tuberosum L-enhances stem elongation and modifies cation distribution. Planta 210:391–399

    Article  PubMed  CAS  Google Scholar 

  • Ralet MC, Cabrera JC, Bonnin E, Quemener B, Hellin P, Thibault JF (2005) Mapping sugar beet pectin acetylation pattern. Phytochemistry 66:1832–1843

    Article  PubMed  CAS  Google Scholar 

  • Renard C, Jarvis MC (1999) Acetylation and methylation of homogalacturonans 2: effect on ion-binding properties and conformations. Carbohydr Polym 39:209–216

    Article  CAS  Google Scholar 

  • Ross HA, Morris WL, Ducreux LJ, Hancock RD, Verrall SR, Morris JA, Tucker GA, Stewart D, Hedley PE, McDougall GJ, Taylor MA (2011) Pectin engineering to modify product quality in potato. Plant Biotechnol J 9(8):848–856

    Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Manabe Y, Vertheertbruggen Y, Gille S, Nafisi M, Rennie E, Oikawa A, Htwe S, Ebert B, Orfila C, Loque D, Knox J, Pauly M, Sakuragi Y (2010) Homologs of Cryptococcus Cas1p are required for glycan acetylation in plants and function upstream of the acetyltransferases. Glycobiology 20:1512 (Abstract 195)

    Google Scholar 

  • Schols HA, Voragen AGJ (1994) Occurrence of pectic hairy regions in various plant cell wall materials and their degradability by rhamnogalacturonase. Carbohydr Res 256:83–95

    Article  CAS  Google Scholar 

  • Selvendran RR, March JF, Ring SG (1979) Determination of aldoses and uronic-acid content of vegetable fiber. Anal Biochem 96:282–292

    Article  PubMed  CAS  Google Scholar 

  • Sengkhamparn N, Bakx EJ, Verhoef R, Schols HA, Sajjaanantakul T, Voragen AGJ (2009) Okra pectin contains an unusual substitution of its rhamnosyl residues with acetyl and alpha-linked galactosyl groups. Carbohydr Res 344:1842–1851

    Article  PubMed  CAS  Google Scholar 

  • Sengkhamparn N, Sagis LMC, de Vries R, Schols HA, Sajjaanantakul T, Voragen AGJ (2010) Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food Hydrocoll 24:35–41

    Article  CAS  Google Scholar 

  • Shevchik VE, HugouvieuxCottePattat N (1997) Identification of a bacterial pectin acetyl esterase in Erwinia chrysanthemi 3937. Mol Microbiol 24:1285–1301

    Article  PubMed  CAS  Google Scholar 

  • Sørensen SO, Pauly M, Bush M, Skjot M, McCann MC, Borkhardt B, Ulvskov P (2000) Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-beta-d-galactanase. Proc Natl Acad Sci USA 97:7639–7644

    Article  Google Scholar 

  • Turquois T, Rinaudo M, Taravel FR, Heyraud A (1999) Extraction of highly gelling pectic substances from sugar beet pulp and potato pulp: influence of extrinsic parameters on their gelling properties. Food Hydrocoll 13:255–262

    Article  CAS  Google Scholar 

  • Ulvskov P, Schols H, Visser R, Borkhardt B, Sørensen S, Oomen R, Vincken JP, McCann M, Skjot M, Bush M, Voragen C, Beldman G (2001) Method for remodelling cell wall polysaccharide structures in plants. PCT-publication WO200159137

  • Ulvskov P, Wium H, Bruce D, Jørgensen B, Qvist KB, Skjot M, Hepworth D, Borkhardt B, Sørensen SO (2005) Biophysical consequences of remodeling the neutral side chains of rhamnogalacturonan I in tubers of transgenic potatoes. Planta 220:609–620

    Article  PubMed  CAS  Google Scholar 

  • van Marle JT, Recourt K, van Dijk C, Schols HA, Voragen AGJ (1997) Structural features of cell walls from potato (Solanum tuberosum L.) cultivars Irene and Nicola. J Agric Food Chem 45:1686–1693

    Article  Google Scholar 

  • Zhang GF, Staehelin LA (1992) Functional compartmentation of the Golgi-apparatus of plant cells—immunocytochemical analysis of high-pressure frozen-substituted and freeze-substituted sycamore maple suspension-culture cells. Plant Physiol 99:1070–1083

    Article  PubMed  CAS  Google Scholar 

  • Zykwinska AW, Ralet MCJ, Garnier CD, Thibault JF (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    Article  PubMed  CAS  Google Scholar 

  • Zykwinska A, Thibault JF, Ralet MC (2008) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym 74:957–961

    Article  CAS  Google Scholar 

Download references


This work was supported by grants from the VKR Research Centre Pro-Active Plants, by the EU-project number 211982 ‘Renewall’, by the Danish National Advanced Technology Foundation, and by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Morten L. Stephensen is acknowledged for skilful technical assistance.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Ulvskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orfila, C., Degan, F.D., Jørgensen, B. et al. Expression of mung bean pectin acetyl esterase in potato tubers: effect on acetylation of cell wall polymers and tuber mechanical properties. Planta 236, 185–196 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: