Skip to main content
Log in

Manipulation of l-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances l-ascorbate levels in red fruit

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ascorbate (AsA) plays a fundamental role in redox homeostasis in plants and animals, primarily by scavenging reactive oxygen species. Three genes, representing diverse steps putatively involved in plant AsA biosynthesis pathways, were cloned and independently expressed in Solanum lycopersicum (tomato) under the control of the CaMV 35S promoter. Yeast-derived GDP-mannose pyrophosphorylase (GMPase) and arabinono-1,4-lactone oxidase (ALO), as well as myo-inositol oxygenase 2 (MIOX2) from Arabidopsis thaliana, were targeted. Increases in GMPase activity were concomitant with increased AsA levels of up to 70% in leaves, 50% in green fruit, and 35% in red fruit. Expression of ALO significantly pulled biosynthetic flux towards AsA in leaves and green fruit by up to 54 and 25%, respectively. Changes in AsA content in plants transcribing the MIOX2 gene were inconsistent in different tissue. On the other hand, MIOX activity was strongly correlated with cell wall uronic acid levels, suggesting that MIOX may be a useful tool for the manipulation of cell wall composition. In conclusion, the Smirnoff–Wheeler pathway showed great promise as a target for biotechnological manipulation of ascorbate levels in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GMPase:

Guanidine-diphosphate mannose pyrophosphorylase

ALO:

Arabinono-1,4-lactone oxidase

MIOX:

Myo-inositol oxygenase

MI:

Myo-inositol

L-GulL:

l-Gulono-1,4-lactone

GlucA:

d-Glucuronic acid

DHA:

Dehydroascorbate

L-Asc:

l-Ascorbate

AsA:

Total ascorbate

GalUR:

Galacturonic acid reductase

L-GalLDH:

l-Galactono-1,4-lactone dehydrogenase

GME:

GDP-d-mannose 3,5-epimerase

O/N:

Over night

GDP:

Guanidine-diphosphate

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181

    PubMed  CAS  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    PubMed  CAS  Google Scholar 

  • Arrigoni O, De Tullio MC (2000) The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions. J Plant Physiol 157:481–488

    CAS  Google Scholar 

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    PubMed  CAS  Google Scholar 

  • Badejo AA, Jeong ST, Goto-Jamamoto N, Esaka M (2007) Cloning and expression of GDP-d-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malphighia glabra L.) fruit at ripening stages. Plant Physiol Biochem 45:665–672

    PubMed  CAS  Google Scholar 

  • Barber GA (1979) Observations on the mechanism of the reversible epimerization of GDP-mannose to GDP-l-galactose by an enzyme from Chlorella pyrenoidosa. J Biol Chem 254:7600–7603

    PubMed  CAS  Google Scholar 

  • Bartoli CG, Pastori GM, Foyer CH (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343

    PubMed  CAS  Google Scholar 

  • Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    PubMed  CAS  Google Scholar 

  • Bartoli CG, Tambussi EA, Diego F, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122

    PubMed  CAS  Google Scholar 

  • Basson CE, Groenewald JH, Kossmann J, Cronje C, Bauer R (2010a) Sugar and acid-related quality attributes and enzyme activities in strawberry fruits: invertase is the main sucrose hydrolyzing enzyme. Food Chem 121:1156–1162

    CAS  Google Scholar 

  • Basson CE, Groenewald JH, Kossmann J, Cronjé C, Bauer R (2010b) Upregulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in strawberry. Transgenic Res 20:925–931

    PubMed  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    PubMed  CAS  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-l-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    PubMed  CAS  Google Scholar 

  • Burgos RC, Chiang VL, Zhang XH, Campbell ER, Podila GK, Campbell WH (1995) RNA isolation from plant tissues recalcitrant to extraction in guanidine. Biotechniques 19:734–737

    Google Scholar 

  • Burns JJ, Mosbach EH (1956) Further observations in the biosynthesis of l-ascorbic acid from d-glucose in the rat. J Biol Chem 221:107–111

    PubMed  CAS  Google Scholar 

  • Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897

    PubMed  CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    PubMed  CAS  Google Scholar 

  • Conklin PL, Pallanca JE, Last RL, Smirnoff N (1997) l-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1. Plant Physiol 115:1277–1285

    PubMed  CAS  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96:4198–4203

    PubMed  CAS  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    PubMed  CAS  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J et al (2006) Arabidopsis thaliana VTC4 encodes l-galactose 1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    PubMed  CAS  Google Scholar 

  • Cruz-Rus E, Botella MA, Valpuesta V, Gomez-Jimenez MC (2010) Analysis of genes involved in l-ascorbic acid biosynthesis during growth and ripening of grape berries. J Plant Physiol 167:739–748

    PubMed  CAS  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    PubMed  CAS  Google Scholar 

  • Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049

    PubMed  CAS  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    PubMed  Google Scholar 

  • Garcia V, Stevens R, Gil L, Gibert L, Gest N, Petit J, Faurobert M et al (2009) An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. C R Biol 332:1007–1021

    PubMed  CAS  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M et al (2009) GDP-d-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell-wall biosynthesis in tomato. Plant J 60:499–508

    PubMed  CAS  Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    PubMed  CAS  Google Scholar 

  • Green MA, Fry SC (2005) Apoplastic degradation of ascorbate: novel enzymes and metabolites permeating the plant cell wall. Plant Biosyst 139:2–7

    Google Scholar 

  • Hancock RD (2009) Recent patents on vitamin C: opportunities for crop improvement and single-step biological manufacture. Recent Pat Food Nutr Agric 1:39–49

    PubMed  CAS  Google Scholar 

  • Hancock RD, Galpin JR, Viola R (2000) Biosynthesis of l-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiol Lett 186:245–250

    PubMed  CAS  Google Scholar 

  • Hancock RD, McRae D, Haupt S, Viola R (2003) Synthesis of l-ascorbic acid in the phloem. BMC Plant Bio 3:7

    Google Scholar 

  • Hashimoto H, Sakakibara A, Yamasaki M, Yoda K (1997) Saccharomyces cerevisiae VIG9 encodes GDP-mannose pyrophosphorylase, which is essential for protein glycosylation. J Biol Chem 272:16308–16314

    PubMed  CAS  Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    PubMed  Google Scholar 

  • Huh W, Kim S, Yang K, Seok Y, Hah YC, Kang S (1994) Characterisation of D-arabinono-1, 4-lactone oxidase from Candida albicans ATCC 10231. Eur Biochem 225:1073–1079

    CAS  Google Scholar 

  • Kanter U, Usadel B, Guerineau F, Li Y, Pauly M, Tenhanken R (2005) The inositol oxygenase gene family of Arabidopsis is involved in the biosynthesis of nucleotide sugar precursor for cell-wall matrix polysaccharides. Planta 221:243–254

    PubMed  CAS  Google Scholar 

  • Keller R, Springer F, Renz A, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    PubMed  CAS  Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanylyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539

    PubMed  CAS  Google Scholar 

  • Lee B, Huh W, Kim S, Lee J, Kang S (1999) Bacterial production of D-erythroascorbic acid and l-ascorbic acid through functional expression of Saccharomyces cerevisiae D-arabinono-1, 4-lactone oxidase in Escherichia coli. Appl Environ Microbiol 65:4685–4687

    PubMed  CAS  Google Scholar 

  • Levine M (1986) New concepts in the biology and biochemistry of ascorbic acid. N Eng J Med 314:892–902

    CAS  Google Scholar 

  • Loannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    PubMed  CAS  Google Scholar 

  • McGarvey P, Kaper JM (1991) A simple and rapid method for screening transgenic plants using the PCR. Biotechniques 11:428–432

    PubMed  CAS  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Haezlewood JL, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of ascorbate synthesis by respiration and its implications for stress response. Plant Physiol 133:443–447

    PubMed  CAS  Google Scholar 

  • Müller O, Krawinkel M (2005) Malnutrition and health in developing countries. Can Med Assoc J 173:279–286

    Google Scholar 

  • Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for l-gulono-gamma-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Lytovchenko A, Smith AM, Loueiro ME, Ratcliffe RG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622

    PubMed  CAS  Google Scholar 

  • Obiadalla-Ali H, Fernie AR, Lytovchenko A, Kossmann J, Lloyd JR (2004) Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism. Planta 219:533–540

    PubMed  CAS  Google Scholar 

  • Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee J, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22:18–35

    PubMed  CAS  Google Scholar 

  • Pallanca JE, Smirnoff N (2000) The control of ascorbic acid synthesis and turnover in pea seedlings. J Exp Bot 51:669–674

    PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    PubMed  CAS  Google Scholar 

  • Reddy CC, Swan JS, Hamilton GA (1981) Myo-inositol oxygenase from hog kidney. Purification and characterization of the oxygenase and of an enzyme complex containing the oxygenase and d-glucuronate reductase. J Biol Chem 256:8510–8518

    PubMed  CAS  Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:131–142

    PubMed  CAS  Google Scholar 

  • Sauer M, Branduardi P, Valli M, Porro D (2004) Production of l-ascorbic acid by metabolically engineered Saccharaomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol 70:6086–6091

    PubMed  CAS  Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S, Schomburg D, Allison G et al (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Pallanca JE (1996) Ascorbate metabolism in relation to oxidative stress. Biochem Soc Trans 24:472–478

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Running JA, Gaztek S (2004) Ascorbate biosynthesis: a diversity of pathways. In: Asard H, May JM, Smirnoff N (eds) Vitamin C: functions and biochemistry in animals and plants. BIOS Scientific Publishers, London, pp 7–29

    Google Scholar 

  • Stein SE (1999) An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J Am Soc Mass Spectrom 10:770–781

    CAS  Google Scholar 

  • Tamaoki M, Mukai F, Asai N, Nakajima N, Kubo A, Aono M, Saji H (2003) Light-controlled expression of a gene encoding l-galactono-1, 4-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Sci 164:1111–1117

    CAS  Google Scholar 

  • Van den Hoogen BM, Van Weeren RP, Lopes-Cardozo M, Van Golde LMG, Barneveld A, Van de Lest CHA (1998) A microtiter plate assay for the determination of uronic acids. Anal Biochem 257:107–111

    PubMed  Google Scholar 

  • Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, Latche A, Pech JC, Fernie AR, Bouzyen M (2009) Regulatory features underlying pollination-dependent and independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21:1428–1452

    PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    PubMed  CAS  Google Scholar 

  • Winston F, Dollard C, Ricupero-Hovasse SL (1995) Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53

    PubMed  CAS  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3′, 5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Maruta T, Nakamura A, Mieda T, Yoshimura K, Ishikawa T, Shigeoka S (2008) Conversion of the l-galactono-1, 4-lactone to l-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis. Biosci Biotechnol Biochem 72:2598–2607

    PubMed  CAS  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Technical support from Ilse Balbo and scientific discussions with Prof. Adriano Nunes-Nesi (Max Planck Institute for Molecular Plant Physiology, Golm, Germany) are much appreciated. Dr Bénédicte A Lebouteiller (Institute for Plant Biotechnology; Stellenbosch University; South Africa) is thanked for her assistance as is funding from the National Research Foundation; South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolene Bauer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 545 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronje, C., George, G.M., Fernie, A.R. et al. Manipulation of l-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances l-ascorbate levels in red fruit. Planta 235, 553–564 (2012). https://doi.org/10.1007/s00425-011-1525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1525-6

Keywords

Navigation