, Volume 235, Issue 3, pp 513–522 | Cite as

Expression of the nucleocapsid protein of Porcine Reproductive and Respiratory Syndrome Virus in soybean seed yields an immunogenic antigenic protein

  • Sornkanok Vimolmangkang
  • Ksenija Gasic
  • Ruth Soria-Guerra
  • Sergio Rosales-Mendoza
  • Leticia Moreno-Fierros
  • Schuyler S. KorbanEmail author
Original Article


Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is a serious disease of swine and contributes to severe worldwide economic losses in swine production. Current vaccines against PRRS rely on the use of an attenuated-live virus; however, these are unreliable. Thus, alternative effective vaccines against PRRS are needed. Plant-based subunit vaccines offer viable, safe, and environmentally friendly alternatives to conventional vaccines. In this study, efforts have been undertaken to develop a soybean-based vaccine against PRRSV. A construct carrying a synthesized PRRSV-ORF7 antigen, nucleocapsid N protein of PRRSV, has been introduced into soybean, Glycine max (L.) Merrill. cvs. Jack and Kunitz, using Agrobacterium-mediated transformation. Transgenic plants carrying the sORF7 transgene have been successfully generated. Molecular analyses of T0 plants confirmed integration of the transgene and transcription of the PRRSV-ORF7. Presence of a 15-kDa protein in seeds of T1 transgenic lines was confirmed by Western blot analysis using PRRSV-ORF7 antisera. The amount of the antigenic protein accumulating in seeds of these transgenic lines was up to 0.65% of the total soluble protein (TSP). A significant induction of a specific immune response, both humoral and mucosal, against PRRSV-ORF7 was observed following intragastric immunization of BALB/c female mice with transgenic soybean seeds. These findings provide a ‘proof of concept’, and serve as a critical step in the development of a subunit plant-based vaccine against PRRS.


PRRS viral subunit Plant-based vaccine Transgenic soybean Immunogenicity 



This research was supported by DOE-CPBR project GO12026-220.


  1. Barfoed AM, Blixenkrone-Møller M, Jensen MH, Bøtner A, Kamstrup S (2004) DNA vaccination of pigs with open reading frame 1–7 of PRRS virus. Vaccine 22:3628–3641PubMedCrossRefGoogle Scholar
  2. Bautista EM, Suárez P, Molitor TW (1999) T cell responses to the structural polypeptides of porcine reproductive and respiratory syndrome virus. Arch Virol 144:117–134PubMedCrossRefGoogle Scholar
  3. Bernard NF, David MK, Peter MH (1996) Fields virology. Lippincott-Raven Publishers, PhiladelphiaGoogle Scholar
  4. Buonaguro FM, Butler-Ransohoff J-E (2010) PharmaPlant: the new frontier in vaccines. Exp Rev Vaccines 9:805–807CrossRefGoogle Scholar
  5. Cano JP, Dee SA, Murtaugh MP, Trincado CA, Pijoan C (2007) Effect of vaccination with a modified-live porcine reproductive and respiratory syndrome virus vaccine on dynamics of homologous viral infection in pigs. Am J Vet Res 68:565–571PubMedCrossRefGoogle Scholar
  6. Chen X, Lu J (2011) Generation and immunogenicity of transgenic potato expressing the GP5 protein of porcine reproductive and respiratory syndrome virus. J Virol Meth 173:153–158CrossRefGoogle Scholar
  7. Chia M-Y, Hsiao S-H, Chan H-T, Do Y-Y, Huang P-L, Chang H-W, Tsai Y-C, Lin C-M, Pang VF, Jeng C-R (2010) Immunogenicity of recombinant GP5 protein of porcine reproductive and respiratory syndrome virus expressed in tobacco plant. Vet Immunol Immunopathol 135:234–242PubMedCrossRefGoogle Scholar
  8. Chia M-Y, Hsiao S-H, Chan H-T, Do Y-Y, Huang P-L, Chang H-W, Tsai Y-C, Lin C-M, Pang VF, Jeng C-R (2011) Evaluation of the immunogenicity of a transgenic tobacco plant expressing the recombinant fusion protein of GP5 of porcine reproductive and respiratory syndrome virus and B subunit of Escherichia coli heat-labile enterotoxin in pigs. Vet Immunol Immunopathol 140:215–225PubMedCrossRefGoogle Scholar
  9. Cho JG, Dee SA (2006) Porcine reproductive and respiratory syndrome virus. Theriogenology 66:655–662PubMedCrossRefGoogle Scholar
  10. Cruza JLG, Zúnigaa S, Bécaresa M, Solaa I, Cerianib JE, Juanolab S, Planab J, Enjuanesa L (2010) Vectored vaccines to protect against PRRSV. Virus Res 154:150–160CrossRefGoogle Scholar
  11. Darwich L, Gimeno M, Sibila M, Diaz I, de la Torre E, Dotti S, Kuzemtseva L, Martin M, Pujols J, Mateu E (2011) Genetic and immunobiological diversities of porcine reproductive and respiratory syndrome genotype I strains. Vet Microbiol. doi: 10.1016/j.vetmic.2011.01.008
  12. Dea S, Gagnon CA, Mardassi H, Pirzadeh B, Rogan D (2000) Current knowledge on the structural proteins of porcine reproductive and respiratory syndrome (PRRS) virus: comparison of the North American and European isolates. Arch Virol 145:659–688PubMedCrossRefGoogle Scholar
  13. Dea S, Deen J, Rossow K et al (2002) Mechanical transmission of porcine reproductive and respiratory syndrome virus throughout a coordinated sequence of events during cold weather. Can J Vet Res 66:232–239Google Scholar
  14. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  15. Dus Santos MJ, Wigdorovitz A (2005) Transgenic plants for the production of veterinary vaccines. Immunol Cell Biol 83:229–238PubMedCrossRefGoogle Scholar
  16. Floss DM, Falkenburg D, Conrad U (2007) Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res 16:315–332PubMedCrossRefGoogle Scholar
  17. Kang T-J, Kim Y-S, Jang Y-S, Yang M-S (2005) Expression of the synthetic neutralizing epitope gene of porcine epidemic diarrhea virus in tobacco plants without nicotine. Vaccine 23:2294–2297PubMedCrossRefGoogle Scholar
  18. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195PubMedCrossRefGoogle Scholar
  19. Ko T-S, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107:439–447PubMedCrossRefGoogle Scholar
  20. Ko T-S, Nelson RL, Korban SS (2004) Screening multiple soybean cultivars (MG 00 to MG VIII) for somatic embryogenesis following Agrobacterium-mediated transformation of immature cotyledons. Crop Sci 44:1825–1831CrossRefGoogle Scholar
  21. Lamphear BJ, Streatfield SJ, Jilka JM et al (2002) Delivery of subunit vaccines in maize seed. J Contr Release 85:169–180CrossRefGoogle Scholar
  22. Lugade AA, Kalathil S, Heald JL, Thanavala Y (2010) Transgenic plant-based oral vaccines. Immunol Invest 39:468–482PubMedCrossRefGoogle Scholar
  23. Mateu E, Diaz I (2008) The challenge of PRRS immunology. Veterinary J 177:345–351CrossRefGoogle Scholar
  24. Meng XJ (2000) Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet Microbiol 74:309–329PubMedCrossRefGoogle Scholar
  25. Monger W, Alamillo JM, Sola I, Perrin Y, Bestagno M, Burrone OR, Sabella P, Plana-Duran J, Enjuanes L, Garcia JA, Lomonossoff GP (2006) An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus infection when supplied orally in crude plant extracts. Plant Biotechnol J 4:623–631PubMedCrossRefGoogle Scholar
  26. Moravec T, Schmidt MA, Herman EM, Woodford-Thomas T (2007) Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine 25:1647–1657PubMedCrossRefGoogle Scholar
  27. Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  28. Neumann EJ, Kliebenstein JB, Johnson CD et al (2005) Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc 227:385–392PubMedCrossRefGoogle Scholar
  29. Nochi T, Takagi H, Yuki Y, Yang L, Masumura T, Mejima M, Nakanishi U, Matsumura A, Uozumi A, Hirita S, Tanaka K, Kiyono H (2007) Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination. Proc Natl Acad Sci USA 104:10986–10991PubMedCrossRefGoogle Scholar
  30. Obregon P, Chargelegue D, Drake PM, Prada A, Nuttall J, Frigerio L, Ma JK (2006) HIV-1 p24-immunoglobulin fusion molecule: a new strategy for plant-based protein production. Plant Biotechnol J 4:195–207PubMedCrossRefGoogle Scholar
  31. Oleksiewicz MB, Bøtner A, Toft P, Normann P, Storgaard T (2001) Epitope mapping Porcine Reproductive and Respiratory Syndrome Virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J Virol 75:3277–3290PubMedCrossRefGoogle Scholar
  32. Oszvald M, Kang TJ, Tomoskozi S et al (2007) Expression of a synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat labile enterotoxin in rice endosperm. Mol Biotechnol 35:215–223PubMedCrossRefGoogle Scholar
  33. Perlman S, Dandekar AA (2005) Immunopathogenesis of coronavirus infections: implications for SARS. Nat Rev Immunol 5:917–927PubMedCrossRefGoogle Scholar
  34. Piller KJ, Clemente TE, Jun SM, Petty CC, Sato S, Pascual DW, Bost KL (2009) Expression and immunogenicity of an Escherichia coli K99 fimbriae subunit antigen in soybean. Planta 222:6–18CrossRefGoogle Scholar
  35. Plana-Durán J, Mourino M, Viaplana E et al (2000) New strategies in the development of PRRS vaccines. Subunit vaccines and self-limiting vectors, based on defective Coronaviruses. Vet Res 31:41–42CrossRefGoogle Scholar
  36. Ren X, Wang M, Yin J, Li G (2010) Phages harboring specific peptides that recognize the N protein of the Porcine Reproductive and Respiratory Syndrome Virus distinguish the virus from other viruses. J Clin Microbiol 48:1875–1881PubMedCrossRefGoogle Scholar
  37. Rosales-Mendoza, S, Soria-Guerra, R, Moreno Fierros L, Herrera-Díaz A, Korban SS, Alpuche-Solís AG (2011) Immunogenicity of nuclear encoded LTB:ST fusion protein from Escherichia coli expressed in tobacco plants. Plant Cell Rep, doi: 10.1007/s00299-011-1023-0 (in press)
  38. Rosales-Mendoza S, Soria-Guerra RE, López-Revilla R, Moreno-Fierros L, Alpuche-Solís A (2008) Ingestion of transgenic carrots expressing the Escherichia coli heat-labile enterotoxin B subunit protects mice against cholera toxin challenge. Plant Cell Rep 27:79–84PubMedCrossRefGoogle Scholar
  39. Rosales-Mendoza S, Soria-Guerra R, Moreno-Fierros L, Han Y, Alpuche-Solís A, Korban SS (2011) Transgenic carrot tap roots express an immunogenic F1-V fusion protein from Yersinia pestis. J Plant Physiol 168:174–180PubMedCrossRefGoogle Scholar
  40. Rowland RR, Yoo D (2003) Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid protein: a simple case of molecular mimicry or the complex regulation by nuclear import, nucleolar localization and nuclear export signal sequences. Virus Res 95:23–33PubMedCrossRefGoogle Scholar
  41. Soria-Guerra R, Alpuche-Solís A, Rosales-Mendoza S, Moreno-Fierros L, Bendik EM, Martinez-Gonzales L, Korban SS (2009) Transplastomic tobacco plants expressing a multi-epitope fusion DPT protein retain antigenicity and immunogenicity of all three components. Planta 229:1293–1302PubMedCrossRefGoogle Scholar
  42. Streatfield SJ, Lane JR, Brooks CA et al (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815PubMedCrossRefGoogle Scholar
  43. Valer K, Fliegmann J, Fröhlich A, Tyler BM, Ebel J (2006) Spatial and temporal expression patterns of Avr1b-1 and defense-related genes in soybean plants upon infection with Phytophthora sojae. FEMS Microbiol Lett 265:60–68PubMedCrossRefGoogle Scholar
  44. Yang SX, Kwang J, Laegreid W (1998) Comparative sequence analysis of open reading frames 2 to 7 of the modified live vaccine virus and other North American isolates of the porcine reproductive and respiratory syndrome virus. Arch Virol 143:601–612PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Sornkanok Vimolmangkang
    • 1
  • Ksenija Gasic
    • 1
    • 2
  • Ruth Soria-Guerra
    • 1
    • 3
  • Sergio Rosales-Mendoza
    • 1
    • 3
  • Leticia Moreno-Fierros
    • 4
  • Schuyler S. Korban
    • 1
    Email author
  1. 1.Department of Natural Resources and Environmental SciencesUniversity of IllinoisUrbanaUSA
  2. 2.Department of Environmental HorticultureClemson UniversityClemsonUSA
  3. 3.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  4. 4.Inmunidad En Mucosas, UBIMED, FES-IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations