Skip to main content
Log in

AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family in plants transport a variety of substrates like nitrate, di- and tripepetides, auxin and carboxylates. We isolated two members of this family from Arabidopsis, AtPTR4 and AtPTR6, which are highly homologous to the characterized di- and tripeptide transporters AtPTR1, AtPTR2 and AtPTR5. All known substrates of members of the PTR/NRT1 family were tested using heterologous expression in Saccharomyces cerevisiae mutants and oocytes of Xenopus laevis, but none could be identified as substrate of AtPTR4 or AtPTR6. AtPTR4 and AtPTR6 show distinct expression patterns, while AtPTR4 is expressed in the vasculature of the plants, AtPTR6 is highly expressed in pollen and during senescence. Phylogenetic analyses revealed that AtPTR2, 4 and 6 belong to one clade of subgoup II, whereas AtPTR1 and 5 are found in a second clade. Like AtPTR2, AtPTR4-GFP and AtPTR6-GFP fusion proteins are localized at the tonoplast. Vacuolar localization was corroborated by co-localization of AtPTR2-YFP with the tonoplast marker protein GFP-AtTIP2;1 and AtTIP1;1-GFP. This indicates that the two clades reflect different intracellular localization at the tonoplast (AtPTR2, 4, 6) and plasma membrane (AtPTR1, 5), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

aa :

Amino acid

GFP:

Green fluorescent protein

GUS:

β-Glucuronidase

N:

Nitrogen

ORF:

Open reading frame

YFP:

Yellow fluorescent protein

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  PubMed  CAS  Google Scholar 

  • Alexandrov NN, Troukhan ME, Brover VV, Tatarinova T, Flavell RB, Feldmann KA (2006) Features of Arabidopsis genes and genome discovered using full-length cDNAs. Plant Mol Biol 60:69–85

    Article  PubMed  CAS  Google Scholar 

  • Ausubel F, Brent R, Kingston R, Moore D, Seidman J, Smith J, Struhl K (1994) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Baukrowitz T, Tucker SJ, Schulte U, Benndorf K, Ruppersberg JP, Fakler B (1999) Inward rectification in KATP channels: a pH switch in the pore. EMBO J 18:847–853

    Article  PubMed  CAS  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    Article  PubMed  CAS  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, Van Den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V (1997) The molecular biology of leaf senescence. J Exp Bot 48:181–199

    Article  Google Scholar 

  • Campalans A, Pages M, Messeguer R (2001) Identification of differentially expressed genes by the cDNA-AFLP technique during dehydration of almond (Prunus amygdalus). Tree Physiol 21:633–643

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Pan SQ, Jan ZH, Avila EL, Girke T, Raikhel NV (2004) The vegetative vacuole proteome of Arabidopsis thaliana reveals predicted and unexpected proteins. Plant Cell 16:3285–3303

    Article  PubMed  CAS  Google Scholar 

  • Chiang CS, Stacey G, Tsay YF (2004) Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J Biol Chem 279:30150–30157

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Dietrich D, Hammes U, Thor K, Suter Grotemeyer M, Flückiger R, Slusarenko AJ, Ward JM, Rentsch D (2004) AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J 40:488–499

    Article  PubMed  CAS  Google Scholar 

  • Dohmen RJ, Strasser AW, Honer CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    Article  PubMed  CAS  Google Scholar 

  • Dunkley TPJ, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB, Dupree P, Lilley KS (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci USA 103:6518–6523

    Article  PubMed  CAS  Google Scholar 

  • Endler A, Meyer S, Schelbert S, Schneider T, Weschke W, Peters SW, Keller F, Baginsky S, Martinoia E, Schmidt UG (2006) Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Plant Physiol 141:196–207

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Rentsch D (1994) Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett 347:185–189

    Article  PubMed  CAS  Google Scholar 

  • Grudkowska M, Zagdanska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochim Pol 51:609–624

    PubMed  CAS  Google Scholar 

  • Hammes UZ, Meier S, Dietrich D, Ward JM, Rentsch D (2010) Functional properties of the Arabidopsis peptide transporters AtPTR1 and AtPTR5. J Biol Chem 285:39710–39717

    Article  PubMed  CAS  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601

    Article  PubMed  CAS  Google Scholar 

  • Higgins CF, Payne JW (1978) Peptide transport by germinating barley embryos: uptake of physiological di- and tripeptides. Planta 138:211–215

    Article  CAS  Google Scholar 

  • Higgins CF, Payne JW (1982) Plant peptides. In: Boulter D, Parthier B (eds) Nucleic acids and proteins in plants. Encyclopedia of plant physiology. Springer, Berlin, pp 438–458

    Chapter  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747

    PubMed  Google Scholar 

  • Jamaï A, Chollet JF, Delrot S (1994) Proton-peptide co-transport in broad bean leaf tissues. Plant Physiol 106:1023–1031

    PubMed  Google Scholar 

  • Jeong JY, Suh S, Guan CH, Tsay YF, Moran N, Oh CJ, An CS, Demchenko KN, Pawlowski K, Lee Y (2004) A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol 134:969–978

    Article  PubMed  CAS  Google Scholar 

  • Karim S, Holmstrom KO, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M (2007) AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 225:1431–1445

    Article  PubMed  CAS  Google Scholar 

  • Komarova NY, Thor K, Gubler A, Meier S, Dietrich D, Weichert A, Grotemeyer Suter M, Tegeder M, Rentsch D (2008) AtPTR1 and AtPTR5 transport dipeptides in planta. Plant Physiol 148:856–869

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of Tl-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646

    Article  PubMed  CAS  Google Scholar 

  • Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene, OsNRT1, from rice. Plant Physiol 122:379–388

    Article  PubMed  CAS  Google Scholar 

  • Lin SH, Kuo HF, Canivenc Gv, Lin CS, Lepetit M, Hsu PK, Tillard P, Lin HL, Wang YY, Tsai CB, Gojon A, Tsay YF (2008) Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. Plant Cell 20:2514–2528

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Marty F (1999) Plant vacuoles. Plant Cell 11:587–600

    Article  PubMed  CAS  Google Scholar 

  • Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:1-0004.0010

    Google Scholar 

  • Miranda M, Borisjuk L, Tewes A, Dietrich D, Rentsch D, Weber H, Wobus U (2003) Peptide and amino acid transporters are differentially regulated during seed development and germination in faba bean. Plant Physiol 132:1950–1960

    Article  PubMed  CAS  Google Scholar 

  • Müntz K (2007) Protein dynamics and proteolysis in plant vacuoles. J Exp Bot 58:2391–2407

    Article  PubMed  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Neuhaus JM, Boevink P (2001) The green fluorescent protein (GFP) as reporter in plant cells. In: Hawes CR, Satiat-Jeunemaitre B (eds) Plant cell biology. Oxford University Press, Oxford, pp 127–142

    Google Scholar 

  • Ouyang J, Cai Z, Xia K, Wang Y, Duan J, Zhang M (2010) Identification and analysis of eight peptide transporter homologs in rice. Plant Sci 179:374–382

    Article  CAS  Google Scholar 

  • Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Rìo LA (2002) Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Parrott DL, McInnerney K, Feller U, Fischer AM (2007) Steam-girdling of barley (Hordeum vulgare) leaves leads to carbohydrate accumulation and accelerated leaf senescence, facilitating transcriptomic analysis of senescence-associated genes. New Phytol 176:56–69

    Article  PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    Article  PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. J Exp Bot 60:2665–2676

    Article  PubMed  CAS  Google Scholar 

  • Rentsch D, Laloi M, Rouhara I, Schmelzer E, Delrot S, Frommer WB (1995) NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett 370:264–268

    Article  PubMed  CAS  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schnell Ramos M, Abele R, Nagy R, Suter Grotemeyer M, Tampe R, Rentsch D, Martinoia E (2011) Characterization of a transport activity for long-chain peptides in barley mesophyll vacuoles. J Exp Bot 62:2403–2410

    Article  CAS  Google Scholar 

  • Schwacke R, Schneider A, van der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R (2003) ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  PubMed  CAS  Google Scholar 

  • Shimaoka T, Ohnishi M, Sazuka T, Mitsuhashi N, Hara-Nishimura I, Shimazaki KI, Maeshima M, Yokota A, Tomizawa KI, Mimura T (2004) Isolation of intact vacuoles and proteomic analysis of tonoplast from suspension-cultured cells of Arabidopsis thaliana. Plant Cell Physiol 45:672–683

    Article  PubMed  CAS  Google Scholar 

  • Song W, Steiner HY, Zhang L, Naider F, Stacey G, Becker JM (1996) Cloning of a second Arabidopsis peptide transport gene. Plant Physiol 110:171–178

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  PubMed  CAS  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2007) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    Article  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3:997–1011

    Article  PubMed  CAS  Google Scholar 

  • Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Waterworth WM, West CE, Bray CM (2000) The barley scutellar peptide transporter: biochemical characterization and localization to the plasma membrane. J Exp Bot 51:1201–1209

    Article  PubMed  CAS  Google Scholar 

  • West CE, Waterworth WM, Stephens SM, Smith CP, Bray CM (1998) Cloning and functional characterisation of a peptide transporter expressed in the scutellum of barley grain during the early stages of germination. Plant J 15:221–229

    Article  PubMed  CAS  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2:e718

    Article  PubMed  Google Scholar 

  • Wright DE (1962) Amino acid uptake by plant roots. Arch Biochem Biophys 97:174–180

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Han P, Lutziger I, Wang K, Oliver DJ (1999) A mini binary vector series for plant transformation. Plant Mol Biol 40:711–717

    Article  PubMed  CAS  Google Scholar 

  • Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T, Takagi T, Tohyama M (1997) Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 272:10205–10211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Erwin Sigel and Matthias Hediger (University of Bern) for providing Xenopus oocytes, Christophe Maurel (INRA/Montpellier) for providing AtTIP1;1-GFP and GFP-AtTIP2;1 plants and John M. Ward (University of Minnesota) for help with the phylogenetic analysis. This work was supported by grants from the Swiss National Science Foundation 3100A0–107507 and 31003A_127340, and EU Marie Curie Research Training Network ‘VaTEP—Vacuolar Transport Equipment for Growth Regulation of Plants’ (MRTN-CT-2006-035833).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Rentsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weichert, A., Brinkmann, C., Komarova, N.Y. et al. AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. Planta 235, 311–323 (2012). https://doi.org/10.1007/s00425-011-1508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1508-7

Keywords

Navigation