Skip to main content
Log in

An unusual form of reaction wood in Koromiko [Hebe salicifolia G. Forst. (Pennell)], a southern hemisphere angiosperm

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Koromiko [Hebe salicifolia G. Forst. (Pennell)] is a woody angiosperm native to New Zealand and Chile. Hebe spp. belong to the otherwise herbaceous family Plantaginaceae in the order Lamiales. Reaction wood exerting expansional forces was found on the lower side of leaning H. salicifolia stems. Such reaction wood is atypical for angiosperms, which commonly form contracting reaction wood on the upper side of leaning stems. Reaction wood typical for angiosperms is formed by species in other families in the order Lamiales. This suggests that the form of reaction wood is specific to the family level. Functionally the reaction wood of H. salicifolia is similar to that found in gymnosperms, which both act by pushing. However, their chemical, anatomical and physical characteristics are different. Typical features of reaction wood present in gymnosperms such as high density, thick-walled rounded cells and the presence of (1 → 4)-β-galactan in the secondary cell wall layer are absent in H. salicifolia reaction wood. Reaction wood of H. salicifolia varies from normal wood in having a higher microfibril angle, which is likely to determine the direction of generated maturation stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FITC:

Fluorescein isothiocyanate

H-units:

p-Hydroxyphenyl-units

L:

Longitudinal

LRS:

Longitudinally released strain

MFA:

Microfibril angle

R:

Radial

S2:

Secondary wall layer 2

S3:

Secondary wall layer 3

S2(L):

Highly lignified outer secondary wall layer 2 in compression wood

T:

Tangential

References

  • Albach DC, Martinez-Ortega MM, Fischer MA, Chase MW (2004) A new classification of the tribe Veroniceae—problems and a possible solution. Taxon 53:429–452

    Article  Google Scholar 

  • Altaner C, Hapca AI, Knox JP, Jarvis MC (2007) Antibody labelling of galactan in Sitka spruce [Picea sitchensis (Bong.) Carrière]. Holzforschung 61:311–316

    Article  CAS  Google Scholar 

  • Altaner CM, Jarvis MC, Fisher JB, Marler TE (2010a) Molecular xylem wall structure of an inclined Cycas micronesica stem, a tropical gymnosperm. IAWA J 31:3–11

    Google Scholar 

  • Altaner CM, Tokareva EN, Jarvis MC, Harris PJ (2010b) Distribution of (1–4)-β-galactans, arabinogalactan proteins, xylans and (1–3)-β-glucans in tracheid cell walls of softwoods. Tree Physiol 30:782–793

    Article  PubMed  CAS  Google Scholar 

  • APG III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Apiolaza LA, Chauhan SS, Walker JCF (2011) Genetic control of very early compression and opposite wood in Pinus radiata and its implications for selection. Tree Genet Genomes 7:563–571

    Article  Google Scholar 

  • Arend M (2008) Immunolocalization of (1, 4)-beta-galactan in tension wood fibers of poplar. Tree Physiol 28:1263–1267

    Article  PubMed  CAS  Google Scholar 

  • Aufseß HV (1973) Microscopic scope of lignification by staining methods. Holz Roh- Werkst 31:24–33

    Article  Google Scholar 

  • Baillères H, Castan M, Monties B, Pollet B, Lapierre C (1997) Lignin structure in Buxus sempervirens reaction wood. Phytochemistry 44:35–39

    Article  Google Scholar 

  • Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood—a theoretical model. Holzforschung 18:146–156

    Article  Google Scholar 

  • Bayly MJ, Kellow AV (2006) An illustrated guide to New Zealand hebes. Te Papa Press, Wellington

    Google Scholar 

  • Carlquist S (1988) Comparative wood anatomy. Springer Verlag, Berlin

    Google Scholar 

  • Cave ID (1966) Theory of X-ray measurement of microfibril angle in wood. Forest Prod J 16:37–42

    Google Scholar 

  • Cheng Z, Fujiwara S, Ohtani Y, Sameshima K (2000) A new method of sample preparation for kenaf past fiber length analysis with automated fiber length analyzer. Holzforschung 54:213–218

    Article  CAS  Google Scholar 

  • Clair B, Almeras T, Sugiyama J (2006) Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar. Ann For Sci 63:507–510

    Article  Google Scholar 

  • Coutand C, Fournier M, Moulia B (2007) The gravitropic response of poplar trunks: key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation. Plant Physiol 144:1166–1180

    Article  PubMed  CAS  Google Scholar 

  • Fisher JB, Marler TE (2006) Eccentric growth but no compression wood in a horizontal stem of Cycas micronesica (cycadales). IAWA J 27:377–382

    Google Scholar 

  • Fournier M, Baillères H, Chanson B (1994) Tree biomechanics: growth, cumulative prestresses and re-orientations. Biomimetics 2:229–251

    Google Scholar 

  • Goswami L, Dunlop JWC, Jungnikl K, Eder M, Gierlinger N, Coutand C, Jeronimidis G, Fratzl P, Burgert I (2008) Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J 56:531–538

    Article  PubMed  CAS  Google Scholar 

  • Guillemin F, Guillon F, Bonnin E, Devaux MF, Chevalier T, Knox JP, Liners F, Thibault JF (2005) Distribution of pectic epitopes in cell walls of the sugar beet root. Planta 222:355–371

    Article  PubMed  CAS  Google Scholar 

  • Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls. In: Himmel ME (ed) Biomass recalcitrance. Wiley-Blackwell, Oxford, pp 61–93

    Chapter  Google Scholar 

  • Höster HR, Liese W (1966) Über das Vorkommen von Reaktionsgewebe in Wurzeln und Ästen der Dikotyledonen. Holzforschung 20:80–90

    Article  Google Scholar 

  • Ilvessalo-Pfäffli M-S (1995) Fiber atlas. Springer Verlag, Berlin

    Google Scholar 

  • Koehler A (1931) The longitudinal shrinkage of wood. Transact Am Soc Mech Eng 53:17–20

    Google Scholar 

  • Kojima M, Yamaji FM, Yamamoto H, Yoshida M, Nakai T (2009) Effects of the lateral growth rate on wood quality parameters of Eucalyptus grandis from different latitudes in Brazil and Argentina. For Ecol Manage 257:2175–2181

    Article  Google Scholar 

  • Kučera LJ, Philipson WR (1977) Growth eccentricity and reaction anatomy in branchwood of Drymis winterii and 5 native New Zealand trees. N Z J Bot 15:517–524

    Google Scholar 

  • Kučera LJ, Philipson WR (1978) Growth eccentricity and reaction anatomy in branchwood of Pseudowintera colorata. Am J Bot 65:601–607

    Article  Google Scholar 

  • Kuo-Huang LL, Chen SS, Huang YS, Chen SJ, Hsieh YI (2007) Growth strains and related wood structures in the leaning trunks and branches of Trochodendron aralioides—a vessel-less dicotyledon. IAWA J 28:211–222

    Google Scholar 

  • Meier H (1962) Studies on a galactan from tension wood of beech (Fagus silvatica L.). Acta Chem Scan 16:2275–2283

    Article  CAS  Google Scholar 

  • Meylan BA (1981) Reaction wood in Pseudowintera colorata—a vessel-less dicotyledon. Wood Sci Technol 15:81–92

    Article  Google Scholar 

  • Meylan BA, Butterfield BG (1978) The structure of New Zealand woods. DSIR Bulletin, Wellington

    Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    Article  PubMed  CAS  Google Scholar 

  • Okuyama T, Yamamoto H, Yoshida M, Hattori Y, Archer RR (1994) Growth stresses in tension wood—role of microfibrils and lignification. Ann Sci For 51:291–300

    Article  Google Scholar 

  • Onaka F (1949) Studies on tension- and compression wood. Mokuzai Kenkyu 1:1–88

    Google Scholar 

  • Prodhan A, Ohtani J, Funada R, Abe H, Fukazawa K (1995) Ultrastructural investigation of tension wood fiber in Fraxinus mandshurica Rupr var. Japonica maxim. Ann Bot 75:311–317

    Article  Google Scholar 

  • Qiu D, Wilson IW, Gan S, Washusen R, Moran GF, Southerton SG (2008) Gene expression in eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G-layers. New Phytol 179:94–103

    Article  PubMed  CAS  Google Scholar 

  • Ruelle J, Clair B, Beauchene J, Prevost MF, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species 2. Comparison of some anatomical and ultrastructural criteria. IAWA J 27:341–376

    Google Scholar 

  • TAPPI (2000) Carbohydrate composition of extractive-free wood and wood pulp by gas-liquid chromatography. Test method T 249 CM-00

  • Timell TE (1983) Origin and evolution of compression wood. Holzforschung 37:1–10

    Article  CAS  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer Verlag, Berlin

    Google Scholar 

  • Tomlinson PB (2001) Reaction tissues in Gnetum gnemon—a preliminary report. IAWA J 22:401–413

    Google Scholar 

  • Wang Y, Gril J, Sugiyama J (2009) Variation in xylem formation of Viburnum odoratissimum var. awabuki: growth strain and related anatomical features of branches exhibiting unusual eccentric growth. Tree Physiol 29:707–713

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Gril J, Clair B, Minato K, Sugiyama J (2010) Wood properties and chemical composition of the eccentric growth branch of Viburnum odoratissimum var. awabuki. Trees Struct Funct 24:541–549

    Article  CAS  Google Scholar 

  • Wardrop AB (1965) The formation and function of reaction wood. In: Côté WA (ed) Cellular ultrastructure of woody plants. Syracuse University Press, New York, pp 371–390

    Google Scholar 

  • Wardrop AB, Dadswell HE (1955) The nature of reaction wood IV. Variations in cell wall organization of tension wood fibres. Aust J Bot 3:177–189

    Article  Google Scholar 

  • Yamamoto H (1998) Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol 32:171–182

    CAS  Google Scholar 

  • Yamamoto H, Yoshida M, Okuyama T (2002) Growth stress controls negative gravitropism in woody plant stems. Planta 216:280–292

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa N, Idei T (1987) Some structural and evolutionary aspects of compression wood tracheids. Wood Fiber Sci 19:343–352

    Google Scholar 

  • Yoshizawa N, Satoh M, Yokota S, Idei T (1993) Formation and structure of reaction wood in Buxus microphylla var. insularis Nakai. Wood Sci Technol 27:1–10

    Google Scholar 

  • Yoshizawa N, Ohba H, Uchiyama J, Yokota S (1999) Deposition of lignin in differentiating xylem cell walls of normal and compression wood of Buxus microphylla var. insularis Nakai. Holzforschung 53:156–160

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nagoya University Global COE Program “From Earth System Science to Basic and Clinical Environmental Studies” of the Japanese Ministry of Education, Culture, Sports, Science and Technology and JSPS “Institutional Program for Young Researcher Overseas Visits”. We thank Dr D. Collings (University of Canterbury) for support with the fluorescence microscopy Prof P. Harris and M. Brennan (University of Auckland) for the help with the monosaccharide analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens M. Altaner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kojima, M., Becker, V.K. & Altaner, C.M. An unusual form of reaction wood in Koromiko [Hebe salicifolia G. Forst. (Pennell)], a southern hemisphere angiosperm. Planta 235, 289–297 (2012). https://doi.org/10.1007/s00425-011-1503-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1503-z

Keywords

Navigation