Skip to main content
Log in

Molecular cloning and biochemical characterization of three Concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Grapes berries produce and accumulate many reactive secondary metabolites, and encounter a wide range of pathogen- and human-derived xenobiotic compounds. The enzymatic glucosylation of these metabolites changes their reactivity, stability and subcellular location. Two ESTs with more than 90% nucleotide sequence identity to three full-length glucosyltransferases are expressed in several grape tissues. The full-length clones have more than 60% amino acid sequence similarity to previously characterized flavonoid 7-O-glucosyltransferases, catechin O-glucosyltransferases and anthocyanin 5-O-glucosyltransferases. In vitro, these enzymes glucosylate flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP). Kinetic analysis indicates that TCP is the preferred substrate for these enzymes, while expression analysis reveals variable transcription of these genes in grape leaves, flowers and berry tissues. The in vivo role of these Vitis labrusca glucosyltransferases is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AF:

After flowering

DFCI:

Dana Farber Cancer Institute

GTs:

Glucosyltransferases

PMSF:

Phenylmethyl sulfonyl fluoride

PSPG:

Plant secondary product glucosyltransferases

PVP-10 or PVPP:

Polyvinylpyrrolidone

Q3G:

Quercetin 3-O-glucoside

TCP:

Trichlorophenol

UDPG:

Uridine 5′-diphosphoglucose

VLOGT:

Vitis labrusca O-glucosyltransferase

VLRSGT:

Vitis labrusca resveratrol glucosyltransferase

References

  • Ali A, Strommer J (2003) A simple extraction and chromatographic system for the simultaneous analysis of anthocyanins and stilbenes of Vitis species. J Agric Food Chem 51:7246–7251

    Article  PubMed  CAS  Google Scholar 

  • Amico V, Chillemi R, Mangiafico S, Spatafora C, Tringali C (2008) Polyphenol-enriched fractions from Sicilian grape pomace: HPLC-DAD analysis and antioxidant activity. Bioresource Technol 99:5960–5966

    Article  CAS  Google Scholar 

  • Bowles D (2002) A multigene family of glycosyltransferases in a model plant, Arabidopsis thaliana. Biochem Soc Trans 30:301–306

    Article  PubMed  CAS  Google Scholar 

  • Brazier-Hicks M, Edwards LA, Edwards R (2007) Selection of plants for roles in phytoremediation: the importance of glucosylation. Plant Biotechnol J 5:627–635

    Article  PubMed  CAS  Google Scholar 

  • Caputi L, Lim E, Bowles D (2008) Discovery of new biocatalysts for the glucosylation of terpenoid scaffolds. Chem Eur J 14:6656–6662

    Article  PubMed  CAS  Google Scholar 

  • Cascado CG, Heredia A (1999) Structure and dynamics of reconstituted cuticular waxes of grape berry cuticle (Vitis vinifera L.). J Exp Bot 50:175–182

    Article  Google Scholar 

  • Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2007) Flavonol profiles of Vitis vinifera red grapes and their single cultivar wines. J Agric Food Chem 55:992–1002

    Article  PubMed  Google Scholar 

  • Castillo-Muñoz N, Gómez-Alonso S, García-Romero E, Gómez V, Velders A, Hermosín-Gutiérrez I (2009) Flavonol 3-O-glycosides series of Vitis vinifera cv. Petit Verdot red wine grapes. J Agr Food Chem 57:209–219

    Article  Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    Article  PubMed  CAS  Google Scholar 

  • Fischer T, Gosch C, Pfeiffer J, Halbwirth H, Halle C, Stich K, Forkmann G (2007) Flavonoid genes of pear (Pyrus communis). Trees 21:521–529

    Article  CAS  Google Scholar 

  • Ford CM, Boss PK, Høj PB (1998) Cloning and characterization of Vitis vinifera UDP-Glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224–9233

    Article  PubMed  CAS  Google Scholar 

  • Hall D, De Luca V (2007) Mesocarp localization of a bi-functional resveratrol/hydroxycinnamic acid glucosyltransferase of Concord grape (Vitis labrusca). Plant J 49:579–591

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1967) Comparative biochemistry of the flavonoids. Academic Press, London

    Google Scholar 

  • Hirotani M, Kuroda R, Suzuki H, Yoshikawa T (2000) Cloning and expression of UDP-glucose: flavonoid 7-O-glucosyltransferase from hairy root cultures of Scutellaria baicalensis. Planta 210:1006–1013

    PubMed  CAS  Google Scholar 

  • Hou B, Lim E, Higgins G, Bowles D (2004) N-Glucosylation of cytokinins by glucosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832

    Article  PubMed  CAS  Google Scholar 

  • Huntley A (2007) Grape flavonoids and menopausal health. Menopause Int 13:165–169

    Article  PubMed  CAS  Google Scholar 

  • Imanishi S, Hashizume K, Kojima H, Ichihara A, Nakamura K (1998) An mRNA of tobacco cell, which is rapidly inducible by methyl jasmonate in the presence of cycloheximide, codes for a putative glycosyltransferases. Plant Cell Physiol 39:202–211

    PubMed  CAS  Google Scholar 

  • Imayama T, Yoshihara N, Fukuchi-Mizutani M, Tanaka Y, Ino I, Yabuya T (2004) Isolation and characterization of a cDNA clone of UDP-glucose: anthocyanin 5-O-glucosyltransferase in Iris hollandica. Plant Sci 167:1243–1248

    Article  CAS  Google Scholar 

  • Jánváry L, Hoffmann T, Pfeiffer J, Hausmann L, Töpfer R, Fischer T, Schwab W (2009) A double mutation in the anthocyanin 5-O-glucosyltranferase gene disrupts enzymatic activity in Vitis vinifera L. J Agr Food Chem 57:3512–3518

    Article  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  PubMed  CAS  Google Scholar 

  • Jones P, Møller B, Høj P (1999) The UDP-glucose:p-hydroxymandelonitrile-O-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. J Biol Chem 274:35483–35491

    Article  PubMed  CAS  Google Scholar 

  • Jones P, Meßner B, Nakajima JI, Schäffner AR, Saito K (2003) UGT73C6 and UGT78D1, glycosyltransferases involved in flavonol glycoside biosynthesis in Arabidopsis thaliana. J Biol Chem 278:43910–43918

    Article  PubMed  CAS  Google Scholar 

  • Jurd L (1962) Spectral properties of flavonoid compounds. In: Geissmann TA (ed) The chemistry of flavonoid compounds. Pergamon Press Inc, Oxford, pp 107–155

    Google Scholar 

  • Kramer CM, Prata RTN, Willits MG, De Luca V, Steffens JC, Graser G (2003) Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry 64:1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevine. Experientia 33:151–152

    Article  PubMed  CAS  Google Scholar 

  • Leifert W, Abeywardena M (2008) Cardioprotective actions of grape polyphenols. Nutr Res 28:729–737

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Baldauf S, Lim EK, Bowles DJ (2001) Phylogenetic analysis of the UDP-glycosyltransferase multigene family of Arabidopsis thaliana. J Biol Chem 276:4338–4343

    Article  PubMed  CAS  Google Scholar 

  • Lim E, Doucet CJ, Li Y, Elias L, Worrall D, Spencer SP, Ross J, Bowles DJ (2002) The activity of Arabidopsis glycosyltransferases toward salicylic acid, 4-hydroxybenzoic acid and other benzoates. J Biol Chem 277:586–592

    Article  PubMed  CAS  Google Scholar 

  • Lim E, Baldauf S, Li Y, Elias L, Worrall D, Spencer SP, Jackson RG, Taguchi G, Ross J, Bowles DJ (2003) Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13:139–145

    Article  PubMed  CAS  Google Scholar 

  • Lim E, Doucet C, Hou B, Jackson R, Abrams S, Bowles D (2005) Resolution of (+)-abscisic acid using an Arabidopsis glucosyltransferase. Tetrahedron Assymetr 16:143–147

    Article  CAS  Google Scholar 

  • Loutre C, Dixon DP, Brazier M, Slater M, Cole DJ, Edwards R (2003) Isolation of a glucosyltransferase from Arabidopsis thaliana active in the metabolism of the persistent pollutant 3, 4-dichloroaniline. Plant J 34:485–493

    Article  PubMed  CAS  Google Scholar 

  • Meßner B, Thulke O, Schäffner AR (2003) Arabidopsis glucosyltransferases with activities toward both endogenous and xenobiotic substrates. Planta 217:138–146

    PubMed  Google Scholar 

  • Moore MO, Giannasi DE (1994) Foliar flavonoids of eastern North American Vitis (Vitaceae) north of Mexico. Plant Syst Evol 193:21–36

    Article  CAS  Google Scholar 

  • Muñoz-Espada A, Wood K, Bordelon B, Watkins B (2004) Anthocyanin quantification and radical scavenging capacity of Concord, Norton, and Marechal Foch grapes and wines. J Agr Food Chem 52:6779–6786

    Article  Google Scholar 

  • Nagashima S, Tomo S, Orihara Y, Yoshikawa T (2004) Cloning and characterization of glucosyltransferase cDNA from Eucalyptus perriniana cultured cells. Plant Biotech 21:343–348

    Article  CAS  Google Scholar 

  • Noguchi A, Saito A, Homma Y, Nakao M, Sasaki N, Nishino T, Takahashi S, Nakayama T (2007) A UDP-glucose: isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings. J Biol Chem 282:23581–23590

    Article  PubMed  CAS  Google Scholar 

  • Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005) Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435:757–758

    Article  PubMed  CAS  Google Scholar 

  • Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, Takahashi S, Kawai Y, Ishiguro M, Fukui Y, Nakayama T (2010) Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). Plant Cell 22:2856–2871

    Article  PubMed  CAS  Google Scholar 

  • Park HJ, Cha HC (2003) Flavonoids from leaves and exocarps of the grape Kyoho. Korean J Biol Sci 7:327–330

    Article  CAS  Google Scholar 

  • Polásková P, Herszage J, Ebeler S (2008) Wine flavor: chemistry in a glass. Chem Soc Rev 37:2478–2489

    Article  PubMed  Google Scholar 

  • Schneider E, von der Heydt H, Esperester A (2008) Evaluation of polyphenol composition in red leaves from different varieties of Vitis vinifera. Plant Med 74:565–572

    Article  CAS  Google Scholar 

  • Taguchi G, Ubukata T, Nobuaki H, Yamamoto H, Okazaki M (2003) Cloning and characterization of a glucosyltransferase that reacts on the 7-hydroxyl group of flavonol and the 3-hydroxyl group of coumarin from tobacco cells. Arch Biochem Biophys 420:95–102

    Article  PubMed  CAS  Google Scholar 

  • Tian L, Blount JW, Dixon RA (2006) Phenylpropanoid glycosyltransferases from osage orange (Maclura pomifera) fruit. FEBS Lett 580:6915–6920

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenow DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–388

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Zimmermann E, Grimm R, Meyer M, Strack D (1997) Are the characteristics of betanidin glucosyltransferases from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferase? Planta 203:349–361

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Grimm R, Strack D (1999) Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant J 19:509–519

    Article  PubMed  CAS  Google Scholar 

  • Willits MG, Giovanni M, Prata RTN, Kramer CM, De Luca V, Steffens JC, Graser G (2004) Bio-fermentation of modified flavonoids: an example of in vivo diversification of secondary metabolites. Phytochemistry 65:31–41

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC–ESI–MS/MS in common foods in the United States: fruits and berries. J Agric Food Chem 53:2589–2599

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Yamagishi E, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K (2002) Two flavonoid glucosyltransferases from Petunia hybrida: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol Biol 48:401–411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by a Natural Sciences and Engineering Research Council of Canada Discovery grant to V.D.L. and a Tier 1 Canada Research Chair in Plant Biotechnology to V.D.L., as well as an NSERC post-graduate fellowship to D.H. We thank G&H Wiley Ltd (St, Catharine’s, Ontario, Canada) for allowing us to collect Concord grapes during the growing season. We thank Tim Jones for performing HPLC-mass spectrometry on selected flavonoid reaction products.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo De Luca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2011_1474_MOESM1_ESM.tif

Figure S1 UPLC chromatogram of grape anthocyanins (1, 2, 3, 4, 9) and flavonoids (5, 6, 7, 8) analyzed at 590 and 360 nm, respectively. The Table insert describes the composition of anthocyanins & flavonoids in mature Vitis labrusca grape mesocarp & exocarp. Mean values from 3 biological replicates ± SD are shown (TIFF 11721 kb)

425_2011_1474_MOESM2_ESM.tif

Figure S2 Amino acid sequence alignment of the Vitis labrusca 7-O-glucosyltransferases VLOGT1 (ABQ02256), VLOGT2 (ABQ02257) and VLOGT3 (ABQ02258) with other enzymes which glucosylate the 7-O-position of flavonols. Abbreviations: NtGT2—Nicotiana tabacum coumarin GT (BAB88935), the Lb_catGT- Lycium barbarium catechin GT (BAG80544), Ep_TpGT—Eucalyptus perriniana monoterpene OGT (BAD90934); Ph_5GT—Petunia x hybrida anthocyanin 5-O-glucosyltransferase (BAA89009); Mp_7GT—Maclura pomifera flavonoid 7-O-glucosyltransferase (ABL85474); Pc_7GT—Pyrus communis flavonoid 7-O-glucosyltransferase (AAY27090). The Plant Secondary Product Glucosyltransferase (PSPG) box is underlined. Different colours represent unique amino acids (TIFF 15113 kb)

425_2011_1474_MOESM3_ESM.tif

Figure S3 Neighbor-joining phylogenetic tree of the Vitis labrusca flavonol 7-O-glucosyltransferase gene family and other previously characterized glycosyltransferases. Lb_catGT—Lycium barbarum catechin 4′OGT (BAG80544); Solanum_5gt—Solanum sogarandinum anthocyanin 5OGT (AAK54465); NtGt2—Nicotiana tabacum coumarin GT (BAB88935); Pet_5gt—Petunia x hybrida anthocyanin 5OGT (BAA89009); Pc_7GT—Pyrus communis flavonoid 7OGT (AAY27090); Mp_7gt—Maclura pomifera flavonoid 7OGT (ABL85474); VLOGT3—Vitis labrusca flavonol 7OGT3 (ABQ02258); Vv_TC108954—Vitis vinifera DFCI EST TC108954; Vv_NP9528154—Vitis vinifera genome sequence NP9528154; Vv_LOC100246377—Vitis vinifera genome sequence Locus 100246377; Ep_TpGT1—Eucalyptus perriniana monoterpene GT 1 (BAD90934); Vvx_5GT—Vitis vinifera cv Regent non-functional anthocyanin 5OGT; VV_5GT—Vitis vinifera cv Regent anthocyanin 5OGT; Per_5GT—Perilla frutescens anthocyanin 5OGT (BAA36421); Verb_5GT—Verbena x hybrida anthocyanin 5OGT (BAA36423); Torenia hybrida anthocyanin 5OGT (BAC54093); At_UGT75D1—Arabidopsis thaliana UGT75D1 xenobiotic and flavonol GT; At_UGT75B1—Arabidopsis thaliana UGT75B1 hydroxybenzoic acid OGT; At_UGT75B2—Arabidopsis thaliana UGT75B2 hydroxybenzoic acid OGT; At_UGT75C1_5GT—Arabidopsis thaliana UGT75C1 anthocyanin 5OGT; Vv_TC125631—Vitis vinifera DFCI EST TC125631; Vv_LOC100242998—Vitis vinifera genome sequence Locus 100242998; VLOGT2—Vitis labrusca flavonol 7OGT2 (ABQ02257); Vv_LOC100248120—Vitis vinifera genome sequence Locus 100248120; Vv_ NP9526770- Vitis vinifera genome sequence NP9526770; VLOGT1—Vitis labrusca flavonol 7OGT 1 (ABQ02256); Gent_5GT—Gentiana triflora anthocyanin 5OGT (BAG32255); Iris_5gt—Iris hollandica anthocyanin 5OGT (BAD06874); At_UGT74F2—Arabidopsis thaliana SAGT1 and 4-aminobenzoate OGT; At_UGT74F1—Arabidopsis thaliana UGT74F1 anthranilate OGT; Nt_SAgt—Nicotiana tabacum salicylic acid OGT (AAF61647); Stev_UGT74G1—Stevia rebaudiana UGT74G1 steviol OGT (AAR06920); At_UGT74B1—Arabidopsis thaliana UGT74B1 thiohydroximate SGT; Bn_thiogt—Brassica napus thiohydroximate SGT (AAL09350); At_JAgt—Arabidopsis thaliana UGT74D1 jasmonic acid OGT (NP_180734); Crocus_safgt—Crocus sativus OGT2 (AAP94878); Zea_IAAgt—Zea mays indole-3-acetate OGT (AAA59054); At_UGT84A3—Arabidopsis thaliana UGT84A3 sinapate 1 OGT (NP_193284); At_UGT84A4—Arabidopsis thaliana UGT84A4 sinapate 1 OGT (NP_193285); At_UGT84A2- Arabidopsis thaliana UGT84A2 sinapate 1 OGT (NP_188793); Bn_Sgt1—Brassica napus sinapate glucosyltransferase (AF287143_1); At_UGT84A1—Arabidopsis thaliana sinapate 1 glucosyltransferase (NP_193283); VLRSGT—Vitis labrusca resveratrol/hydroxycinnamic acid OGT (ABH03018); Fra_SAgt2—Fragaria x ananassa cinnamate OGT (AAU09443); Citrus_Limgt—Citrus unshiu liminoid OGT (BAA93039); Mt_UGT84F1—Medicago truncatula isoflavonoid OGT (ABI94023); At_UGT84B1—Arabidopsis thaliana abscisic acid/indole-3-acetic acid OGT/quercetin 7OGT (NP_179907); At_UGT84B2—Arabidopsis thaliana abscisic acid OGT (NP_179906); Dian_chalconegt—Dianthus caryophyllus chalcone 2’OGT (BAD52007); Stev_ugt76G1—Stevia rebaudiana UGT76G1 (AAR06912); At_UGT76E11—Arabidopsis thaliana UGT76E11 quercetin 3OGT and 7OGT (NP_190251); Mt_UGT85H2—Medicago truncatula isoflavonoid OGT (ABI94024); At_UGT85A1_ZeaGT—Arabidopsis thaliana UGT85A1 zeatin OGT (NP_173656); Stev_ugt85C2—Stevia rebaudiana UGT85C2 (AAR06916); Sorghum_UGT85B1—Sorghum bicolor p-hydroxymandelonitrile OGT (Q9SBL1); OryzaIsoFL7GT—Oryza sativa isoflavonoid 7OGT (NP_001059671); Phas_HRA25—Phaseolus vulgaris OGT HRA25 (AF303396_1); Vv_3gt—Vitis vinifera flavonoid 3OGT (AAB81683); VL_3gt—Vitis labrusca flavonoid 3OGT (ABR24135); FraGT1_3GT—Fragaria x ananassa flavonoid 3OGT (AAU09442); At_UGT78D2—Arabidopsis thaliana UGT 78D2 flavonoid 3OGT (NP_197207); At_UGT78D3—Arabidopsis thaliana UGT78D3 flavonol 3-O-arabinosyltransferase (NP_197205); At_UGT78D1—Arabidopsis thaliana UGT 78D1 UDP-rhamnose flavonol 3-O-rhamnosyltransferase (NP_564357); Per_3gt—Perilla frutescens flavonoid 3OGT (BAA19659); Gent _3gt—Gentiana triflora anthocyanidin 3OGT (Q96493); Pet_3gt—Petunia x hybrida anthocyanidin 3OGT (BAA89008); Ipomoea—Ipomoea purpurea flavonoid 3OGT (AAB86473); Mt_UGT78G1—Medicago truncatula isoflavonoid OGT (ABI94025); Dian_3gt—Dianthus caryophyllus flavonol 3OGT (BAD52005); Iris_3gt—Iris hollandica anthocyanidin 3OGT (BAD83701); Hv_3gt—Hordeum vulgare anthocyanidin 3OGT (P14726); Zea_3gt—Zea mays anthocyanidin 3OGT (P16165); Cr_curcgt2—Catharanthus roseus curcumin OGT2 (BAD29722); Gent_3′gt—Gentiana triflora anthocyanin 3’OGT (Q8H0F2); Scut_7gt—Scutellaria baicalensis flavonoid 7OGT (BAA83484); Doro_bet5gt—Dorotheanthus bellidiformis betanidin 5OGT (CAB56231); Rhodiola_salidrosideGT—Rhodiola sachalinensis salidroside OGT (AAS55083); At_UGT73B1—Arabidopsis thaliana UGT73B1 flavonoid 7OGT (NP_567955); Gly_isoflv_gt—Glycyrrhiza echinata isoflavonoid OGT (BAC78438); Vigna_ABAgt—Vigna angularis abscisic acid OGT (BAB83692); Mt_UGT73P1—Medicago truncatula isoflavonoid OGT (ABI94026); Sol_saponin_gt—Solanum aculeatissimum saponin OGT (BAD89042); Sol_sgat1—Solanum tuberosum solanidine galactosyltransferase (AAB48444); At_UGT73C5—Arabidopsis thaliana UGT73C5 zeatin OGT, flavonol 4′ and 7OGT (NP_181218); AtUGT73C6—Arabidopsis thaliana UGT73C6 flavonol 3 and 7OGT (NP_181217); At_UGT73C1—Arabidopsis thaliana UGT73C1 zeatin OGT (NP_181213); Nt_gt4—Nicotiana tabacum flavonoid OGT (BAD93688); Mt_UGT73C8—Medicago truncatula isoflavonoid OGT (ABI94020); At_UGT89B1—Arabidopsis thaliana UGT89B1 flavonol 3,4′ and 7OGT (NP_177529); At_89C1—Arabidopsis thaliana UGT89C1 7-O-rhamnosyltransferase to 7-O-glucose (NP_563756); Mira_DOPAgt—Mirabilis jalapa DOPA 5OGT (BAD91803); Ipo2′′gt—Ipomoea purpurea anthocyanin 2′′OGT (BAD95882); Nt_gt1—Nicotiana tabacum OGT1 (BAB60720); Nt_gt1b—Nicotiana tabacum OGT1b (BAB60721); Nt_gt3—Nicotiana tabacum OGT3 (BAB88934); Cr_curcgt1—Catharanthus roseus curcumin OGT1 (BAD29721); Ipomoea_IAAgt—Ipomoea purpurea indole-3-acetate OGT (BAF75917); Doro_bet6gt—Dorotheanthus bellidiformis betanidin 6OGT (AAL57240); Mt_UGT71G1—Medicago truncatula triterpenoid/flavonoid OGT (2ACW_A); At_UGT71C1—Arabidopsis thaliana UGT71C1 flavonol 3′ and 7OGT (NP_180536); OryzaFl3GT—Oryza sativa flavonol 3OGT (BAC83989); Mt_UGT88E1—Medicago truncatula isoflavonoid OGT (ABI94021); Mt_UGT88E2—Medicago truncatula isoflavonoid OGT (ABI94022); GM_Isoflv7GT—Glycine max isoflavonoid 7OGT (BAF64416); Rose_5gt—Rosa x hybrida anthocyanidin 5,3OGT (Q4R1I9); Antirr_chalcGT—Antirrhinum majus chalcone OGT (BAE48239); Sc_5OGT—Sinningia cardinalis 3-deoxy anthocyanin 5OGT (BAJ11653); Oryza7GT—Oryza sativa flavonoid 7OGT (NP_001044173); Os_RF5—Oryza sativa flavonoid OGT5 (NP_001044170); Bn_UGT2—Brassica napus xenobiotic GT (CAM31954); Mt_epicat_GT—Medicago truncatula epicatechin OGT (ACC38470); Os_RUGT10—Oryza sativa OGT (NP_001174726); Gly_Zeatingt—Glycine max zeatin OGT (AAM09514); Phas_ZOG1—Phaseolus lunatus zeatin OGT (Q9ZSK5); Zea_cisZOGT—Zea mays cis-zeatin OGT (NP_001105017) (TIFF 9949 kb)

Supplementary Table S1 (PDF 23 kb)

Supplementary Table S2 (PDF 122 kb)

Supplementary Table S3 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, D., Kim, K.H. & De Luca, V. Molecular cloning and biochemical characterization of three Concord grape (Vitis labrusca) flavonol 7-O-glucosyltransferases. Planta 234, 1201–1214 (2011). https://doi.org/10.1007/s00425-011-1474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1474-0

Keywords

Navigation