Skip to main content
Log in

Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots

Planta Aims and scope Submit manuscript

Abstract

The effects of cadmium (Cd) on aminopeptidase (AP) activities and Leucine-AP (LAP) expression were investigated in the roots of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 10 days in the presence of 0.3–300 μM Cd and compared to control plants grown in the absence of Cd. AP activities were measured using six different p-nitroanilide (p-NA) substrates. Leu, Met, Arg, Pro and Lys hydrolyzing activities increased in roots of Cd-treated plants, while Phe-pNA cleavage was not enhanced after Cd treatments. The use of peptidase inhibitors showed that most of the Leu-pNA hydrolyzing activity was related to one or several metallo-APs. Changes in Lap transcripts, protein and activities were measured in the roots of 0 and 30-μM Cd-treated plants. LapA transcript levels increased in Cd-treated roots, whereas LapN RNAs levels were not modified. To assess amount of Leu-pNA hydrolyzing activity associated with the hexameric LAPs, LAP activity was measured following immunoprecipitation with a LAP polyclonal antiserum. LAP activity increased in Cd-treated roots. There was a corresponding increase in LAP-A protein levels detected in 2D-immunoblots. The role of LAP-A in the proteolytic response to Cd stress is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Abbreviations

AP:

Aminopeptidase

Cd:

Cadmium

LAP:

Leucine aminopeptidase

PMSF:

Phenylmethylsulfonyl fluoride

pNA:

p-Nitroanilide

References

  • Basset G, Raymond P, Malek L, Brouquisse R (2002) Changes in the expression and enzymic properties of the 20S proteasome in sugar-starved maize roots. Evidence for an in vivo oxidation of the proteasome. Plant Physiol 128:1149–1162

    Article  PubMed  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dierick J-F, van Tuinen D, Remacle J, Gianinazzi-Pearson V, Gianinazzi S (2002) Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23:122–137

    Article  PubMed  CAS  Google Scholar 

  • Book AJ, Yang P, Scalf M, Smith LM, Vierstra RD (2005) Tripeptidyl peptidase II. An oligomeric protease complex from Arabidopsis. Plant Physiol 138:1046–1057

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chao WS, Pautot V, Holzer FM, Walling LL (2000) Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A. Planta 210:563–573

    Article  PubMed  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1998) Studies on cadmium toxicity in plants: a review. Environ Pollut 96:29–36

    Google Scholar 

  • Davies KJ, Delsignore ME (1987) Protein damage and degradation by oxygen radicals. III Modification of secondary and tertiary structure. J Biol Chem 262:9908–9913

    PubMed  CAS  Google Scholar 

  • Davies KJA (2001) Degradation of oxidized proteins by the 20S proteasome. Biochimie 83:301–310

    Article  PubMed  CAS  Google Scholar 

  • Djebali W, Gallusci P, Polge C, Boulila L, Galtier N, Raymond P, Chaibi W, Brouquisse R (2008) Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants. Planta 227:625–639

    Article  PubMed  CAS  Google Scholar 

  • Fowler JH, Narvaez-Vasquez J, Aromdee DN, Pautot V, Holzer FM, Walling LL (2009) Leucine aminopeptidase regulates defense and wound signalling in tomato downstream of jasmonic acid. Plant Cell 21:1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Grune T, Merker K, Sandig G, Davie KJA (2003) Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Comm 305:709–718

    Article  PubMed  CAS  Google Scholar 

  • Gu Y-Q, Walling LL (2000) Specificity of the wound-induced leucine aminopeptidase (LAP-A) of tomato. Activity on dipeptide and tripeptide substrates. Eur J Biochem 267:1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Gu Y-Q, Chao WS, Walling LL (1996a) Localization and post-translational processing of the wound-induced leucine aminopeptidase proteins of tomato. J Biol Chem 271:25880–25887

    Article  PubMed  CAS  Google Scholar 

  • Gu Y-Q, Pautot V, Holtzer FM, Walling LL (1996b) A complex array of proteins related to the multimeric leucine aminopeptidase of tomato. Plant Physiol 110:1257–1266

    PubMed  CAS  Google Scholar 

  • Gu Y-Q, Holzer FM, Walling LL (1999) Overexpression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. Eur J Biochem 263:726–735

    Article  PubMed  CAS  Google Scholar 

  • Jwa N-S, Walling LL (2001) Influence of elevated CO2 concentration on disease development in tomato. New Phytol 149:509–518

    Article  CAS  Google Scholar 

  • Kahle H (1993) Response of roots of trees to heavy metals. Environ Exp Bot 33:99–119

    Article  Google Scholar 

  • Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigene presentation. Curr Opin Immunol 16:76–81

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by ubiquitin–proteasome pathway in normal and disease states. J Am Soc Nephrol 17:1807–1819

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Fowler JH, Walling LL (2006) Leucine aminopeptidases: diversity in structure and function. Biol Chem 387:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • McCarthy I, Romero-Puertas MC, Plama JM, Sandalio LM, Corpas FJ, Gomez M, Del Rio LA (2001) Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ 24:1065–1073

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Pena LB, Pasquini LA, Tomaro ML, Gallego SM (2007) 20S proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to cadmium stress. Phytochemistry 68:1139–1146

    Article  PubMed  CAS  Google Scholar 

  • Peer WA (2011) The role of multifunctional M1 metallopeptidase in cell cycle progression. Ann Bot. doi:10.1093/aob/mcq265

  • Polge C, Jaquinod M, Holzer FM, Bourguignon J, Walling LL, Brouquisse R (2009) Evidence for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway. Activation in response to cadmium. J Biol Chem 284:35412–35424

    Article  PubMed  CAS  Google Scholar 

  • Rawling ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acid Res 34:D270–D272

    Article  Google Scholar 

  • Reits E, Neijssen J, Herberts C, Benckhuijsen W, Janssen L, Drijfhout JW, Neefjes J (2004) A major role for TPPII in trimming proteasomal degradation products for MHC-class-I antigen presentation. Immunity 20:495–506

    Article  PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Saric T, Graef C, Goldberg AL (2004) Pathway of degradation of peptides generated by proteasomes. A key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 279:46723–46732

    Article  PubMed  CAS  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet J, Vailhen D, Amekraz B, Moulin C, Ezan C, Garin J, Bourguignon J (2006) The early response of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analysis. Proteomics 6:2180–2198

    Article  PubMed  CAS  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1993) Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem 62:797–821

    Article  PubMed  CAS  Google Scholar 

  • Tu CJ, Park SY, Walling LL (2003) Isolation and characterization of the neutral leucine aminopeptidase (LAP-N) of tomato. Plant Physiol 132:243–255

    Article  PubMed  CAS  Google Scholar 

  • Wang CS, Walling LL, Eckard KJ, Lord EM (1992) Immunological characterization of a tapetal protein in developing anthers of Lilium longiflorum. Plant Physiol 99:822–829

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Brouquisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulila-Zoghlami, L., Gallusci, P., Holzer, F.M. et al. Up-regulation of leucine aminopeptidase-A in cadmium-treated tomato roots. Planta 234, 857–863 (2011). https://doi.org/10.1007/s00425-011-1468-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1468-y

Keywords

Navigation