Skip to main content
Log in

Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript


Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP). The genome of rice (Oryza sativa) contains 11 OsTPS genes, and only OsTPS1 shows TPS activity. To demonstrate the physiological function of OsTPS1, we introduced it into rice and found that OsTPS1 overexpression improved the tolerance of rice seedling to cold, high salinity and drought treatments without other significant phenotypic changes. In transgenic lines overexpressing OsTPS1, trehalose and proline concentrations were higher than in the wild type and some stress-related genes were up-regulated, including WSI18, RAB16C, HSP70, and ELIP. These results demonstrate that OsTPS1 may enhance the abiotic stress tolerance of plants by increasing the amount of trehalose and proline, and regulating the expression of stress-related genes. Furthermore, we found that overexpression of some Class II TPSs also enhanced plant tolerance of abiotic stress. This work will help to clarify the role of trehalose metabolism in abiotic stress response in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others



Abscisic acid


Cauliflower mosaic virus


Fresh weight


High-performance ion chromatography


Reverse transcription polymerase chain reaction




Trehalose-6-phosphate phosphatase


Trehalose-6-phosphate synthase


Wild type


  • Almeida AM, Villalobos E, Araújo SS, Leyman B, Van Dijck P, Alfaro-Cardoso L, Fevereiro PS, Torné JM, Santos DM (2005) Transformation of tobacco with an Arabidopsis thaliana gene involved in trehalose biosynthesis increases tolerance to several abiotic stresses. Euphytica 146(1–2):165–176

    Article  CAS  Google Scholar 

  • Almeida AM, Cardoso LA, Santos DM, Torné JM, Fevereiro PS (2007) Trehalose and its applications in plant biotechnology. In Vitro Cell Dev Biol 43(3):167–177

    Article  CAS  Google Scholar 

  • Anselmino O, Gilg E (1913) Ueber das Vorkommen von trehalose in Selaginella lepidophylla. Ber Deut Pharm Ges 23:326–330

    CAS  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-p synthase AtTPS1 gene is a regulator of glucose, abscisic acid and stress signaling. Plant Physiol 136(3):3649–3659

    Article  PubMed  CAS  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6(1):109–123

    Article  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273(50):33311–33319

    Article  PubMed  CAS  Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87(2):223–226

    Article  CAS  Google Scholar 

  • Blázquez MA, Santos E, Flores C, Martínez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterisation of the Arabidopsis TPS1 gene, encoding trehalose 6-phosphate synthase. Plant J 13(5):685–689

    Article  PubMed  Google Scholar 

  • Cabib E, Leloir LF (1958) The biosynthesis of trehalose phosphate. J Biol Chem 231:259–275

    PubMed  CAS  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169(1):75–82

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiol 13(4):17R–27R

    Article  CAS  Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15(7):409–417

    Article  PubMed  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99(25):15898–15903

    Article  PubMed  CAS  Google Scholar 

  • Goddijn OJM, Van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4(8):315–319

    Article  PubMed  Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen RWHH, De Graff PTHM, Poels J, Van Dun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113(1):181–190

    Article  PubMed  CAS  Google Scholar 

  • Harthill JE, Meek SEM, Morrice N, Peggie MW, Borch J, Wong BHC, MacKintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47(2):211–223

    Article  PubMed  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10(9):3793–3810

    Article  PubMed  CAS  Google Scholar 

  • Jeong SC, Pack IS, Cho EY, Youk ES, Park S, Yoon WK, Kim CG, Choi YD, Kim JK, Kim HM (2007) Molecular analysis and quantitative detection of a transgenic rice line expressing a bifunctional fusion TPSP. Food Control 18(11):1434–1442

    Article  CAS  Google Scholar 

  • Joshee N, Kisaka H, Kitagawa Y (1998) Isolation and characterization of a water stress-specific genomic gene, pwsi18, from rice. Plant Cell Physiol 39(1):64–72

    PubMed  CAS  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Mantyla E, Palva ET, Van Dijck P, Holmstrom KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64(4):371–386

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7(5):193–195

    Article  PubMed  CAS  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223(2):329–339

    Article  PubMed  CAS  Google Scholar 

  • Leyman B, Van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci 6(11):510–513

    Article  PubMed  CAS  Google Scholar 

  • Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P, Hajirezaei MR, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  PubMed  CAS  Google Scholar 

  • Neelam S, Yeon-Ki K, Anil G (2009) Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics 10(1):393–410

    Article  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang YH (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  PubMed  CAS  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58(6):751–762

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen T, Hess MW, Mäkelä P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54(5):743–753

    Article  PubMed  CAS  Google Scholar 

  • Ramon M, Rolland F (2007) Plant development: introducing trehalose metabolism. Trends Plant Sci 12(5):185–188

    Article  PubMed  CAS  Google Scholar 

  • Romero C, Bellés JM, Vayá JL, Serrano R, Culiáñez-Macià FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201(3):293–297

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95(11):5857–5864

    Article  PubMed  CAS  Google Scholar 

  • Shima S, Matsui H, Tahara S, Imai R (2007) Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes. FEBS J 274(5):1192–1201

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577(1):1–9

    PubMed  CAS  Google Scholar 

  • Van Dijck P, Mascorro-Gallardo JO, De Bus M, Royackers K, Iturriaga G, Thevelein JM (2002) Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. Biochem J 366(Pt 1):63–71

    PubMed  Google Scholar 

  • Van Dijken AJH, Schluepmann H, Smeekens SCM (2004) Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135(2):969–977

    Article  PubMed  Google Scholar 

  • Van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63(3):201–210

    Google Scholar 

  • Vandesteene L, Ramon M, Le Roy K, Van Dijck P, Rolland F (2010) A single active trehalose-6-p synthase (TPS) and a family of putative regulatory TPS-like proteins in arabidopsis. Mol Plant 3(2):406–419

    Article  PubMed  CAS  Google Scholar 

  • Veluthambi K, Mahadevan S, Maheshwari R (1982) Trehalose toxicity in Cuscuta reflexa. Plant Physiol 69(6):1247–1251

    Article  PubMed  CAS  Google Scholar 

  • Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A (1998) Trehalose 6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13(5):673–683

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Hao YJ, Zhang ZG, Chen T, Zhang JS, Chen SY (2005) Isolation of trehalose-6-phosphate phosphatase gene from tobacco and its functional analysis in yeast cells. J Plant Physiol 162(2):215–223

    Article  PubMed  CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek 58(3):209–217

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Kim YS, Jeong MH, Oh SJ, Jeong JS, Park SH, Jung H, Choi YD, Kim JK (2010) Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 232(3):743–754

    Article  PubMed  CAS  Google Scholar 

  • Zang BS, Li HW, Li WJ, Deng XW, Wang XP (2011) Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice. Plant Mol Biol. doi:10.1007/s11103-011-9781-1

  • Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) A Selaginella lepidophylla trehalose-6-thosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol 119(4):1473–1482

    Article  PubMed  CAS  Google Scholar 

Download references


This research was supported by grants from the Agricultural Ministry of China (2008ZX08009-003), the 863 High-tech Project from the Ministry of Science and Technology of China (2007AA10Z185), and the National Natural Science Foundation of China (2010 No. 31071378).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xi-Ping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (DOC 30.5 kb)

Online Resource 2 (DOC 30.5 kb)


Online Resource 3 Architecture analysis of different TPS1 proteins. a The protein features of TPShomologues were analyzed using SMART (Schultz et al. 1998). The TPS domains (Pfam: Glyco_transf_20) are indicated by white rectangles. The TPP domains (Pfam: Trehalose_PPase) are indicated by gray rectangles. b Sequence alignment of EcotsA (E. coli, P31677), ScTPS1 (S. cerevisiae, Q00764), SlTPS1 (S. lepidophylla, Q9ZR75), AtTPS1 (A. thaliana, Q9SYM4) and OsTPS1 (O. sativa, HM050424). A black background indicates amino acid residues which are completely identical. A gray background depicted conserved amino acid residues which are identical in at least three of the protein sequences (TIFF 7.33 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, HW., Zang, BS., Deng, XW. et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234, 1007–1018 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: