Skip to main content
Log in

The sucrose synthase-1 promoter from Citrus sinensis directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Interest in phloem-specific promoters for the engineering of transgenic plants has been increasing in recent years. In this study we isolated two similar, but distinct, alleles of the Citrus sinensis sucrose synthase-1 promoter (CsSUS1p) and inserted them upstream of the β-glucuronidase (GUS) gene to test their ability to drive expression in the phloem of transgenic Arabidopsis thaliana and Nicotiana tabacum. Although both promoter variants were capable of conferring localized GUS expression in the phloem, the CsSUS1p-2 allele also generated a significant level of expression in non-target tissues. Unexpectedly, GUS expression was also instigated in a minority of CsSUS1p::GUS lines in response to wounding in the leaves of transgenic Arabidopsis. Deletion analysis of the CsSUS1p suggested that a fragment comprising nucleotides −410 to −268 relative to the translational start site contained elements required for phloem-specific expression while nucleotides −268 to −103 contained elements necessary for wound-specific expression. Interestingly, the main difference between the two CsSUS1p alleles was the presence of a 94-bp insertion in allele 2. Fusion of this indel to a minimal promoter and GUS reporter gene indicated that it contained stamen and carpel-specific enhancer elements. This finding of highly specific and separable regulatory units within the CsSUS1p suggests that this promoter may have a potential application in the generation of constructs for the use in the development of transgenic plants resistant to a wide variety of target pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BA:

Benzyl adenine

CaMV:

Cauliflower mosaic virus

CsSUS1p :

SUS1 upstream region from Citrus sinensis

GUS:

β-Glucuronidase

MS:

Murashige and Skoog

MU:

Methylumbelliferone

PCR:

Polymerase chain reaction

5′ RACE:

5′ Rapid amplification of cDNA ends

5′ RAGE:

5′ Rapid amplification of genomic DNA ends

RT-PCR:

Reverse transcription polymerase chain reaction

SUS:

Sucrose synthase

UDP:

Uridine diphosphate

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409

    Article  PubMed  CAS  Google Scholar 

  • Bieniawska Z, Barratt DHP, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    Article  PubMed  CAS  Google Scholar 

  • Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat: expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131

    Article  Google Scholar 

  • Chiu W-B, Lin C-H, Chang C-J, Hsieh M-H, Wang A-Y (2006) Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol 170:53–63

    Article  PubMed  CAS  Google Scholar 

  • Chopra S, Del-Favero J, Dolferus R, Jacobs M (1992) Sucrose synthase of Arabidopsis: genomic cloning and sequence characterization. Plant Mol Biol 18:131–134

    Article  PubMed  CAS  Google Scholar 

  • Chopra S, Brendel V, Zhang JB, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci USA 96:15330–15335

    Article  PubMed  CAS  Google Scholar 

  • Clancy M, Hannah LC (2002) Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol 130:918–929

    Article  PubMed  CAS  Google Scholar 

  • Clancy M, Vasil V, Hannah LC, Vasil IK (1994) Maize Shrunken-1 intron and exon regions increase gene expression in maize protoplasts. Plant Sci 98:151–161

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Daie J (1989) Phloem loading of sucrose: update and opportunities in molecular biology. Plant Mol Biol Rep 7:106–115

    Article  CAS  Google Scholar 

  • Fu H, Park WD (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7:1369–1385

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Kim SY, Park WD (1995a) High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Kim SY, Park WD (1995b) A potato Sus3 sucrose synthase gene contains a context-dependent 3′ element and a leader intron with both positive and negative tissue-specific effects. Plant Cell 7:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Gibson S (2000) Plant sugar-response pathways: part of a complex regulatory web. Plant Physiol 124:1532–1539

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Okada TS, Kondoh H (1990) Functional cooperation of lens-specific and nonspecific elements in the d1-crystallin enhancer. Mol Cell Biol 10:958–964

    PubMed  CAS  Google Scholar 

  • Graham MW, Craig S, Waterhouse PM (1997) Expression patterns of vascular-specific promoters RolC and Sh in transgenic potatoes and their use in engineering PLRV-resistant plants. Plant Mol Biol 33:729–735

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Chen X, Zhang H, Fang R, Yuan Z, Zhang Z, Tian Y (2004) Characterization and activity enhancement of the phloem-specific pumpkin PP2 gene promoter. Transgenic Res 13:559–566

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hehn A, Rohde W (1998) Characterization of cis-acting elements affecting strength and phloem specificity of the coconut decay virus promoter. J Gen Virol 79:1495–1499

    PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga K (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Liu Z (2009) A simple and sensitive high-throughput GFP screening in woody and herbaceous plants. Plant Cell Rep 28:493–501

    Article  PubMed  CAS  Google Scholar 

  • Hily JM, Singer SD, Yang Y, Liu Z (2009) A transformation booster sequence (TBS) from Petunia hybrida functions as an enhancer-blocking insulator in Arabidopsis thaliana. Plant Cell Rep 28:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Hohnjec N, Becker JD, Pühler A, Perlick AM, Küster H (1999) Genomic organization and expression properties of the MtSUcS1 gene, which encodes a nodule-enhanced sucrose synthase in the model legume Medicago truncatula. Mol Gen Genet 261:514–522

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Ibraheem O, Hove RM, Bradley G (2008) Sucrose assimilation and the role of sucrose transporters in plant wound response. Afr J Biotechnol 7:4850–4855

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kay R, Chan A, Daly M, McPherson J (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236:1299–1302

    Article  PubMed  CAS  Google Scholar 

  • Koch KE, Nolte KD, Duke ER, McCarthy DR, Avigne WT (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4:59–69

    Article  PubMed  CAS  Google Scholar 

  • Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Dehais P, Moreau Y, De Moor B, Rouze P, Rombauts S (2002) PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  • Lingle SE, Dyer JM (2004) Polymorphisms in the promoter region of the sucrose synthase-2 gene of Saccharum genotypes. J Am Soc Sugar Cane Technol 24:241–249

    Google Scholar 

  • Liu X, Baird WV (2001) Rapid amplification of genomic DNA ends by NlaIII partial digestion and polynucleotide tailing. Plant Mol Biol Rep 19:261–267

    Article  Google Scholar 

  • Liu Z, Liu Z (2008) The second intron of AGAMOUS drives carpel- and stamen-specific expression sufficient to induce complete sterility in Arabidopsis. Plant Cell Rep 27:855–863

    Article  PubMed  Google Scholar 

  • Luo H, Lee J-Y, Hu Q, Nelson-Vasilchik K, Eitas TK, Lickwar C, Kausch AP, Chandlee JM, Hodges TK (2006) RTS, a rice anther-specific gene is required for male fertility and its promoter sequence directs tissue-specific gene expression in different plant species. Plant Mol Biol 62:397–408

    Article  PubMed  CAS  Google Scholar 

  • Maas C, Laufs J, Grant S, Korfhage C, Werr W (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16:199–207

    Article  PubMed  CAS  Google Scholar 

  • Maraña C, García-Olmedo F, Carbonero P (1990) Differential expression of two types of sucrose-synthase-coding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167–172

    Article  PubMed  Google Scholar 

  • Martin T, Frommer WB, Salanoubat M, Willmitzer L (1993) Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J 4:367–377

    Article  PubMed  CAS  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  PubMed  CAS  Google Scholar 

  • Moffat AS (2001) Finding new ways to fight plant disease. Science 292:2270–2273

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagadhara D, Ramesh S, Pasalu IC, Rao K, Krishnaiah NV, Sarma NP, Bown DP, Gatehouse JA, Reddy VD, Rao KV (2003) Transgenic indica rice resistant to sap-sucking insects. Plant Biotechnol J 1:231–240

    Article  PubMed  CAS  Google Scholar 

  • Nishiuchi T, Shinshi H, Suzuki K (2004) Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: possible involvement of NtWRKYs and autorepression. J Biol Chem 279:55355–55361

    Article  PubMed  CAS  Google Scholar 

  • Nolte KD, Koch KE (1993) Companion-cell specific localization of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101:899–905

    PubMed  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Oshima RG, Abrams L, Kulesh D (1990) Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes Dev 4:835–848

    Article  PubMed  CAS  Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Pl 40:1–22

    Article  CAS  Google Scholar 

  • Ricard B, Rivoai J, Spiteri A, Pradet A (1991) Anaerobic stress induced the transcription and translation of sucrose synthase in rice. Plant Physiol 95:669–674

    Article  PubMed  CAS  Google Scholar 

  • Ricard B, VanToai T, Chourey P, Saglio P (1998) Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol 116:1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Roque E, Gomez MD, Ellul P, Wallbraun M, Madueno F, Beltran JP, Canas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequence and splicing. Plant Physiol 122:535–542

    Article  PubMed  CAS  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE (1996) Interaction of elicitor-induced DNA binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J 15:5690–5700

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Sadeghi A, Broeders S, De Greve H, Hernalsteens J-P, Peumans WJ, Van Damme EJM, Smagghe G (2007) Expression of garlic leaf lectin under the control of the phloem-specific promoter Asus1 from Arabidopsis thaliana protects tobacco plants against the tobacco aphid (Myzus nicotianae). Pest Manage Sci 63:1215–1223

    Article  CAS  Google Scholar 

  • Saha P, Dasgupta I, Das S (2006) A novel approach for developing resistance in rice against phloem limited viruses by antagonizing the phloem feeding hemipteran vectors. Plant Mol Biol 62:735–752

    Article  PubMed  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety and social consequences of the development of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Wang MB, Powell KS, Van Damme E, Hilder VA, Gatehouse AMR, Boulter D, Gatehouse JA (1994) Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of β-glucuronidase and snowdrop lectin genes in transgenic tobacco plants. J Exp Bot 45:623–631

    Article  CAS  Google Scholar 

  • Sturm A, Tang G-Q (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  PubMed  Google Scholar 

  • Sturm A, Lienhard S, Schatt S, Hardegger M (1999) Tissue-specific expression of two genes for sucrose synthase in carrot (Daucus carota L.). Plant Mol Biol 39:349–360

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Lobods T, Sung SS, Black CC (1992) Sucrose synthase in wild tomato, Lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol 98:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DJ, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van Engelen FA, Molthoff JW, Conner AJ, Nap J-P, Pereira A, Stiekema WJ (1995) pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4:288–290

    Article  PubMed  Google Scholar 

  • Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah C (1990) Increased gene expression by the first intron of maize Shrunken-1 locus in grass species. Plant Physiol 91:1575–1579

    Article  Google Scholar 

  • Wang M, Boulter D, Gatehouse JA (1992) A complete sequence of the rice sucrose synthase-1 (RSs1) gene. Plant Mol Biol 19:881–885

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Smith A, Brenner ML (1994) Temporal and spatial expression pattern of sucrose synthase during tomato fruit development. Plant Physiol 104:535–540

    PubMed  CAS  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Article  CAS  Google Scholar 

  • Yang N-S, Russell D (1990) Maize sucrose synthase-1 promoter directs phloem cell-specific expression of Gus gene in transgenic tobacco plants. Proc Natl Acad Sci USA 87:4144–4148

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Wu Y, Avigne WT, Koch KE (1998) Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol 116:1573–1583

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by state, federal, and institutional funds appropriated to the New York State Agricultural Experiment Station, Cornell University, and by the State of Florida Department of Citrus and the Citrus Research and Development Foundation, Inc. project NAS ID number 38 (Cornell OSP 57390 and 63013). We also thank Sara Villani for her invaluable technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerik D. Cox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singer, S.D., Hily, JM. & Cox, K.D. The sucrose synthase-1 promoter from Citrus sinensis directs expression of the β-glucuronidase reporter gene in phloem tissue and in response to wounding in transgenic plants. Planta 234, 623–637 (2011). https://doi.org/10.1007/s00425-011-1432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1432-x

Keywords

Navigation