Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley

Abstract

Genes encoding two new isoforms of sucrose synthase from barley, HvSs3 and HvSs4, have been characterised and their expression patterns compared with those previously described for HvSs1 and HvSs2, in different organs and during seed maturation and germination. Their response to several abiotic stimuli has also been investigated in leaves: HvSs1 is up-regulated by anoxia and HvSs3 by water deprivation while no response is observed to 150 mM NaCl treatment; HvSs1 and HvSs3 are also induced by cold temperatures. Using translational fusions and transient expression analyses, the four isozymes have been localised not only to the cytoplasm but also along several cytoplasmic tracks and at the inner side of the cell membrane; besides, HvSS1 is also associated with mitochondria, a localisation that has been predicted in silico with the TargetP and Predotar programmes. These data suggest distinct although partially overlapping roles, for the four barley sucrose synthase isoforms, in the channelling of carbon towards different metabolic pathways within the cell.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

dap:

Days after pollination

ER:

Endoplasmic reticulum

GFP:

Green fluorescent protein

G:

Golgi apparatus

hai:

Hours after imbibition

mCherryFP:

mCherry fluorescent protein

MT:

Mitochondria

mTP:

Mitochondrial targeting peptide

PM:

Plasma membrane

PT:

Plastids

SUS:

Sucrose synthase

UbiE2:

UbiquitinE2

References

  1. Amor Y, Haigler C, Johnson S, Winscott M, Delmer D (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    PubMed  Article  CAS  Google Scholar 

  2. Angeles-Nuñez JG, Tiessen A (2010) Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Planta 232:701–718

    PubMed  Article  Google Scholar 

  3. Baroja-Fernández E, Muñoz F, Montero M, Etxeberria E, Sesma M, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J (2009) Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol 50:1651–1662

    PubMed  Article  Google Scholar 

  4. Barratt DH, Barber L, Kruger N, Smith A, Wang T, Martin C (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127:655–664

    PubMed  Article  CAS  Google Scholar 

  5. Barratt DH, Derbishire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule A, Smith A (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA 106:13124–13129

    PubMed  Article  CAS  Google Scholar 

  6. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy S, Griffiths-Jones S, Howe K, Marshall M, Sonnhammer E (2002) The Pfam protein families database. Nucleic Acid Res 30:276–280

    PubMed  Article  CAS  Google Scholar 

  7. Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409

    PubMed  Article  CAS  Google Scholar 

  8. Bieniawska Z, Barratt DH, Garlick A, Thole V, Kruger N, Martin C, Zrenner R, Smith A (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    PubMed  Article  CAS  Google Scholar 

  9. Buckeridge M, Vergara C, Carpita N (1999) The mechanism of synthesis of a mixed-linkage (1 → 3),(1 → 4)β-d-glucan in maize. Evidence for multiple sites of glucosyl transfer in the synthase complex. Plant Physiol 120:1105–1116

    PubMed  Article  CAS  Google Scholar 

  10. Carlson S, Chourey P (1996) Evidence for plasma membrane-associated forms of sucrose synthase in maize. Mol Gen Genet 252:1432–1874

    Article  Google Scholar 

  11. Carlson SJ, Chourey PS, Helentjaris T, Datta R (2002) Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Mol Biol 49:15–29

    PubMed  Article  CAS  Google Scholar 

  12. Chang S, Puryear J, Carney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  13. Chourey P, Taliercio E, Carlson S, Ruan YL (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol Gen Genet 259:88–96

    PubMed  Article  CAS  Google Scholar 

  14. Coleman HD, Yan J, Mansfield S (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123

    PubMed  Article  CAS  Google Scholar 

  15. Crespi M, Zabaleta E, Pontis H, Salerno G (1991) Sucrose synthase expression during cold acclimation in wheat. Plant Physiol 96:887–891

    PubMed  Article  CAS  Google Scholar 

  16. Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36:521–528

    PubMed  Article  CAS  Google Scholar 

  17. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP, and related tools. Nat Protoc 2:953–971

    PubMed  Article  CAS  Google Scholar 

  18. Etxeberria E, Gońzález P (2003) Evidence for a tonoplast-associated form of sucrose synthase and its potential involvement in sucrose mobilization from the vacuole. J Exp Bot 54:1407–1414

    PubMed  Article  CAS  Google Scholar 

  19. Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery, 2010. Plant Cell Physiol 51:294–301

    PubMed  Article  CAS  Google Scholar 

  20. Gordon A, Minchin F, James C, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878

    PubMed  Article  CAS  Google Scholar 

  21. Guerin J, Carbonero P (1997) The spatial distribution of sucrose synthase isozymes in barley. Plant Physiol 114:55–62

    PubMed  CAS  Google Scholar 

  22. Harada T, Satoh S, Yoshioka T, Ishizawa K (2005) Expression of sucrose synthase genes involved in enhanced elongation of pondweed (Potamogeton distinctus) turions under anoxia. Ann Bot 96:683–692

    PubMed  Article  CAS  Google Scholar 

  23. Hirose T, Scofield G, Terao T (2008) An expression analysis profile for the entire sucrose synthase gene family in rice. Plant Sci 174:534–543

    CAS  Google Scholar 

  24. Horst I, Welham T, Kelly S, Kaneko T, Sato S, Tabata S, Parniske M, Wang T (2007) TILLING mutants of Lotus japonicus reveal that nitrogen assimilation and fixation can occur in the absence of nodule-enhanced sucrose synthase. Plant Physiol 144:806–820

    PubMed  Article  CAS  Google Scholar 

  25. Kleines M, Elster R-C, Rodrigo MJ, Blervacq A-S, Salamini F, Bartels D (1999) Isolation and expression analysis of two stressed-responsive sucrose-synthase genes from the resurrection plant Craterostigma plantagineum (Hochst.). Planta 209:13–24

    PubMed  Article  CAS  Google Scholar 

  26. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    PubMed  Article  CAS  Google Scholar 

  27. Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J Exp Bot 53:61–71

    PubMed  Article  CAS  Google Scholar 

  28. Lagrimini LM, Burkhart W, Moyer M, Rothstein S (1987) Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco: Molecular analysis and tissue-specific expression. Proc Natl Acad Sci USA 84:7542–7546

    PubMed  Article  CAS  Google Scholar 

  29. Maraña C, Garcia-Olmedo F, Carbonero P (1990) Differential expression of two types of sucrose synthase-encoding genes in wheat in response to anaerobiosis, cold shock and light. Gene 88:167–172

    PubMed  Article  Google Scholar 

  30. Martínez de Ilarduya O, Vicente-Carbajosa J, Sánchez de la Hoz P, Carbonero P (1993) Sucrose synthase genes in barley. cDNA cloning of the Ss2 type and tissue-specific expression of Ss1 and Ss2. FEBS Lett 320:177–181

    PubMed  Article  Google Scholar 

  31. Moreno-Risueno MA, Díaz I, Carrillo L, Fuentes R, Carbonero P (2007) The HvDOF19 transcription factor mediates the abscisic acid dependent repression of hydrolase genes in germinating barley aleurone. Plant J 51:352–365

    PubMed  Article  CAS  Google Scholar 

  32. Moreno-Risueno MA, Gonzalez N, Diaz I, Parcy F, Carbonero P, Vicente-Carbajosa J (2008) FUSCA3 from barley unveils a common transcriptional regulation of seed-specific genes between cereals and Arabidopsis. Plant J 53:882–894

    PubMed  Article  CAS  Google Scholar 

  33. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    PubMed  Article  CAS  Google Scholar 

  34. Nelson B, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localisation studies in Arabidopsis and other plants. Plant J 51:1126–1136

    PubMed  Article  CAS  Google Scholar 

  35. Nolte K, Koch K (1993) Companion-cell specific localisation of sucrose synthase in zones of phloem loading and unloading. Plant Physiol 101:899–905

    PubMed  CAS  Google Scholar 

  36. Nuñez JGA, Kronenberger J, Wuilleme S, Lepiniec L, Rochat C (2008) Study of AtSUS2 localisation in seeds reveals a strong association with plastids. Plant Cell Physiol 49:1621–1626

    PubMed  Article  Google Scholar 

  37. Persia D, Cai G, Del Casino C, Faleri C, Willemse M, Cresti M (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147:1603–1618

    PubMed  Article  CAS  Google Scholar 

  38. Ricard B, Rivoal J, Spiteri A, Pradet A (1991) Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiol 95:669–674

    PubMed  Article  CAS  Google Scholar 

  39. Ruan YL, Llewellyn DJ, Furbank RT (2003) Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation and seed development. Plant Cell 15:952–964

    PubMed  Article  CAS  Google Scholar 

  40. Sánchez de la Hoz P, Vicente-Carbajosa J, Mena M, Carbonero P (1992) Homologous sucrose synthase genes in barley (Hordeum vulgare) are located in chromosomes 7H (syn. 1) and 2H. Evidence for a gene translocation? FEBS Lett 310:46–50

    PubMed  Article  Google Scholar 

  41. Sato K, Shin-I T, Seki M, Shinozaki K, Yoshida H, Takeda K, Yamazaki Y, Conte M, Kohara Y (2009) Development of 5006 full-length cDNAs in barley: a tool for accessing cereal genomics resources. DNA Res 16:81–89

    PubMed  Article  Google Scholar 

  42. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    PubMed  Article  CAS  Google Scholar 

  43. Staehelin L (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    PubMed  Article  CAS  Google Scholar 

  44. Subbaiah C, Palaniappan A, Duncan K, Rhoads D, Huber S, Sachs M (2006) Mitochondrial localisation and putative signalling function of sucrose synthase in maize. J Biol Chem 281:15625–15635

    PubMed  Article  CAS  Google Scholar 

  45. Tamura K, Dudley J, Nei M, Kumar C (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  Article  CAS  Google Scholar 

  46. Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680

    PubMed  Article  CAS  Google Scholar 

  47. Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    PubMed  Article  CAS  Google Scholar 

  48. Wang AI, Kao MH, Yang WH, Sayion Y, Liu LF, Lee PD, Su JC (1999) Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiol 40:800–807

    PubMed  CAS  Google Scholar 

  49. Winter H, Huber J, Huber S (1998) Identification of sucrose synthase as an actin-binding protein. FEBS Lett 430:205–208

    PubMed  Article  CAS  Google Scholar 

  50. Zeng Y, Wu Y, Avigne WT, Koch KE (1998) Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiol 116:1573–1583

    PubMed  Article  CAS  Google Scholar 

  51. Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J 7:97–107

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants to PC from the Spanish Ministerio de Educación y Ciencia (BFU2006-07258) and from the Spanish Ministerio de Innovación y Ciencia (BFU2009-11809); C.B.-S. holds a postdoctoral Juan de la Cierva-UPM contract; S.H.-A. is supported by a FPU doctoral fellowship from MEC.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristina Barrero-Sicilia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1

α-Actin2 and UbiE2 expression in abiotically stressed leaves: hypoxia, salt, drought and cold temperatures as specified in the text. The 18S gene was used to normalize the RT-qPCR data (TIFF 107 kb)

Supplementary Fig. S2

Subcellular localisation of HvSS2 fused to GFP (a), HvSS3 fused to mCherryFP (b) and overlay projection of the two previous ones (c) (TIFF 2418 kb)

Supplementary Fig. S3

Fluorescence pattern of five organelle markers (mCherryFP) in bombarded epidermal onion cells, specific for: the endoplasmic reticulum (a), plasma membrane (b), Golgi apparatus (c), plastids (d) and mitochondria (e) (TIFF 7975 kb)

Supplementary Table S1. Oligonucleotides used for HvSs (DOC 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barrero-Sicilia, C., Hernando-Amado, S., González-Melendi, P. et al. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234, 391–403 (2011). https://doi.org/10.1007/s00425-011-1408-x

Download citation

Keywords

  • Barley
  • Brachypodium
  • Gene expression
  • Gene structure
  • Subcellular localisation
  • Sucrose synthase genes