Skip to main content
Log in

Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

One of the most common types of modification of secondary metabolites is the acylation of oxygen- and nitrogen-containing substrates to produce esters and amides, respectively. Among the known acyltransferases, the members of the plant BAHD family are capable of acylating a wide variety of substrates. Two full-length acyltransferase cDNAs (LaAT1 and 2) were isolated from lavender flowers (Lavandula angustifolia L.) by reverse transcriptase-PCR using degenerate primers based on BAHD sequences. Recombinant LaAT1 exhibited a broad substrate tolerance accepting (hydroxy)cinnamoyl-CoAs as acyl donors and not only tyramine, tryptamine, phenylethylamine and anthranilic acid but also shikimic acid and 4-hydroxyphenyllactic acid as acceptors. Thus, LaLT1 forms esters and amides like its phylogenetic neighbors. In planta LaAT1 might be involved in the biosynthesis of rosmarinic acid, the ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, a major constituent of lavender flowers. LaAT2 is one of three members of clade VI with unknown function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

4CL:

(Hydroxy)cinnamic acid:CoA ligase

BAHD:

Family of acyltransferases named after the first four biochemically characterized enzymes

DTT:

Dithiothreitol

GC–MS:

Gas chromatography mass spectrometry

GST:

Glutathion S-transferase

HCAA:

Hydroxycinnamic acid amides

HPLC-ESI-MSn :

High-performance liquid chromatography electrospray ionization mass spectrometry

IPTG:

Isopropyl-β-d-thiogalactopyranoside

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcriptase polymerase chain reaction

SDS-PAGE:

Sodium dodecylsulphate polyacrylamide gel electrophoresis

THT:

Tyramine N-(hydroxycinnamoyl) transferase

References

  • Aharoni A, Keizer LC, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AM, De Vos RC, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–662

    Article  PubMed  CAS  Google Scholar 

  • Back K, Jang SM, Lee B-C, Schmidt A, Strack D, Kim K-M (2001) Cloning and characterization of a hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl) transferase induced in response to UV-C and wounding from Capsicum annuum. Plant Cell Physiol 42:475–481

    Article  PubMed  CAS  Google Scholar 

  • Barratt NM, Dong W, Gage DA, Magnus V, Town CD (1999) Metabolism of exogenous auxin by Arabidopsis thaliana: Identification of the conjugate N α-(indol-3-ylacetyl)-glutamine and initiation of a mutant screen. Physiol Plant 105:207–217

    Article  CAS  Google Scholar 

  • Berger A, Meinhard J, Petersen M (2006) Rosmarinic acid synthase is a new member oft the superfamily of BAHD acyltransferases. Planta 224:1503–1510

    Article  PubMed  CAS  Google Scholar 

  • Beuerle T, Pichersky E (2002) Enzymatic synthesis and purification of aromatic coenzyme A esters. Anal Biochem 302:305–312

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Burhenne K, Kristensen BK, Rasmussen SK (2003) A new class of N-hydroxycinnamoyltransferases. J Biol Chem 278:13919–13927

    Article  PubMed  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clinic Microbiol Rev 12:564–582

    CAS  Google Scholar 

  • Crombie L (1999) Natural product chemistry and its part in the defence against insects and fungi in agriculture. Pestic Sci 55:761–774

    Article  CAS  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  Google Scholar 

  • D’Auria JC, Gershenzon J (2005) The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol 8:308–316

    Article  PubMed  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Facchini PJ, Hagel J, Zulak KG (2002) Hydroxycinnamic acid amide metabolism; physiology and biochemistry. Can J Bot 80:577–589

    Article  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16:1446–1465

    Article  PubMed  CAS  Google Scholar 

  • Hohlfeld H, Schürmann W, Scheel D, Strack D (1995) Partial purification and characterization of hydroxycinnamoyl-coenzyme A:tyramine hydroxycinnamoyl-transferase from cell suspension cultures of Solanum tuberosum. Plant Physiol 107:545–552

    PubMed  Google Scholar 

  • Hohlfeld H, Scheel D, Strack D (1996) Purification of hydroxycinnamoyl-CoA:tyramine hydroxycinnamoyltransferase from cell-suspension cultures of Solanum tuberosum L. cv. Datura. Planta 199:166–168

    Article  CAS  Google Scholar 

  • Jang S-M, Ishihara A, Back K (2004) Production of coumaroylserotonin and feruloylserotonin in transgenic rice expression pepper hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase. Plant Physiol 135:346–356

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD (2004) Arabidopsis MPSS. An online resource for quantitative expression analysis. Plant Physiol 135:801–813

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Strack D (2004) Serine carboxypeptidase-like acyltransferases. Phytochemistry 65:517–524

    Article  PubMed  CAS  Google Scholar 

  • Moglia A, Comino C, Lanteri S, de Vos R, de Waard P, van Beek TA, Goitre L, Retta SF, Beekwilder J (2010) Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast. Metabol Eng 12:223–232

    Article  CAS  Google Scholar 

  • Nakane E, Kawakita K, Doke N, Yoshioka H (2003) Elicitation of primary and secondary metabolism during defense in the potato. J Gen Plant Pathol 69:378–384

    Article  CAS  Google Scholar 

  • Nicholson RL, Wood KV (2001) Phytoalexins and secondary products, where are they and how can we measure them? Physiol Mol Plant Pathol 59:63–69

    Article  CAS  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nature Biotechnol 22:746–754

    Article  CAS  Google Scholar 

  • Petersen M (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30:2877–2881

    Article  CAS  Google Scholar 

  • Petersen M (1997) Cyctochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165–1172

    Article  CAS  Google Scholar 

  • Petersen M, Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z Naturforsch 43c:501–504

    Google Scholar 

  • Petersen M, Metzger JW (1993) Identification of the reaction products of rosmarinic acid synthase from cell cultures of Coleus blumei by ion spray mass spectrometry and tandem mass spectrometry. Phytochem Anal 4:131–134

    Article  CAS  Google Scholar 

  • Petersen M, Simmonds MSJ (2003) Molecules of interest: rosmarinic acid. Phytochemistry 62:121–125

    Article  PubMed  CAS  Google Scholar 

  • Petersen M, Häusler E, Karwatzki B, Meinhard J (2003) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189:10–14

    Google Scholar 

  • Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S (2009) Evolution of rosmarinic acid biosynthesis. Phytochemistry 70:1663–1679

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Grimm R, Schmidt J, Scheel D, Strack D, Rosahl S (1999) Cloning and expression of a potato cDNA encoding hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase. J Biol Chem 274:4273–4280

    Article  PubMed  CAS  Google Scholar 

  • Schoch G, Goepfer S, Morant M, Hehn A, Meyer D, Ullmann P, Werck-Reichert D (2001) CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J Biol Chem 276:36566–36574

    Article  PubMed  CAS  Google Scholar 

  • Schwab W (2003) Metabolome diversity: too many metabolites too few genes. Phytochemistry 62:837–849

    Article  PubMed  CAS  Google Scholar 

  • Shellie R, Mondello L, Marriot P, Dugo G (2002) Characterization of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J Chromatogr A 970:225–234

    Article  PubMed  CAS  Google Scholar 

  • Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis seedgenes project. Nucleic Acids Res 31:90–93

    Article  PubMed  CAS  Google Scholar 

  • von Roepenack-Lahaye E, Newmann M-A, Schornack S, Hammond-Kosack KE, Lahaye T, Jones JDG, Daniels MJ, Dow JM (2003) p-Coumaroylnoradrenaline, a novel plant metabolite implicated in tomato defense against pathogens. J Biol Chem 278:43373–43383

    Article  Google Scholar 

  • Walker K, Long R, Croteau R (2002) The final acylation step in taxol biosynthesis: cloning of the taxoid C13-side-chain N-benzoyltransferase from Taxus. Proc Natl Acad Sci USA 99:9166–9171

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD, Schrimi LM, Sequeira E, Tatusova TA, Wagner L (2003) Database resources of the National Center for Biotechnology. Nucleic Acids Res 31:28–33

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Reinhard K, Schiltz E, Matern U (1997) Characterization and heterologous expression of hydroxycinnamoyl/benzoyl-CoA: anthranilate N-hydroxycinnamoyl/benzoyltransferase from elicited cell cultures of carnation, Dianthus caryophyllus L. Plant Mol Biol 35:777–789

    Article  PubMed  CAS  Google Scholar 

  • Yang Q, Trinh HX, Imai S, Ishihara A, Zhang L, Nakayashiki H, Tosa Y, Mayama S (2004) Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyl-transferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. Mol Plant Microbe Interact 17:81–89

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Till Beuerle (Institute for Pharmaceutical Biology, Technical University Braunschweig, Braunschweig, Germany) and Eran Pichersky (Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, USA) for providing the (hydroxy)cinnamic acid:CoA ligase gene. The financial support by Degussa is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Schwab.

Additional information

The nucleotide sequences reported in this article have been deposited in the GenBank database under Accession Nos. DQ886904 (LaAT1) and DQ886905 (LaAT2).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 91 kb)

 

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landmann, C., Hücherig, S., Fink, B. et al. Substrate promiscuity of a rosmarinic acid synthase from lavender (Lavandula angustifolia L.). Planta 234, 305–320 (2011). https://doi.org/10.1007/s00425-011-1400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1400-5

Keywords

Navigation