Skip to main content
Log in

Anoxia-induced elevation of cytosolic Ca2+ concentration depends on different Ca2+ sources in rice and wheat protoplasts

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The anoxia-dependent elevation of cytosolic Ca2+ concentration, [Ca2+]cyt, was investigated in plants differing in tolerance to hypoxia. The [Ca2+]cyt was measured by fluorescence microscopy in single protoplasts loaded with the calcium-fluoroprobe Fura 2-AM. Imposition of anoxia led to a fast (within 3 min) significant elevation of [Ca2+]cyt in rice leaf protoplasts. A tenfold drop in the external Ca2+ concentration (to 0.1 mM) resulted in considerable decrease of the [Ca2+]cyt shift. Rice root protoplasts reacted upon anoxia with higher amplitude. Addition of plasma membrane (verapamil, La3+ and EGTA) and intracellular membrane Ca2+-channel antagonists (Li+, ruthenium red and cyclosporine A) reduced the anoxic Ca2+-accumulation in rice. Wheat protoplasts responded to anoxia by smaller changes of [Ca2+]cyt. In wheat leaf protoplasts, the amplitude of the Ca2+-shift little depended on the external level of Ca2+. Wheat root protoplasts were characterized by a small shift of [Ca2+]cyt under anoxia. Plasmalemma Ca2+-channel blockers had little effect on the elevation of cytosolic Ca2+ in wheat protoplasts. Intact rice seedlings absorbed Ca2+ from the external medium under anoxic treatment. On the contrary, wheat seedlings were characterized by leakage of Ca2+. Verapamil abolished the Ca2+ influx in rice roots and Ca2+ efflux from wheat roots. Anoxia-induced [Ca2+]cyt elevation was high particularly in rice, a hypoxia-tolerant species. In conclusion, both external and internal Ca2+ stores are important for anoxic [Ca2+]cyt elevation in rice, whereas the hypoxia-intolerant wheat does not require external sources for [Ca2+]cyt rise. Leaf and root protoplasts similarly responded to anoxia, independent of their organ origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cs A:

Cyclosporine A

DMSO:

Dimethyl sulfoxide

EGTA:

Ethylene glycol-bis(beta-aminoethyl ether) N,N,N,N-tetra acetic acid

Fura 2-AM:

Acetoxymethyl ester of calcium binding benzofuran

RR:

Ruthenium red

References

  • Bailey-Serres J, Chang R (2005) Sensing and signaling in response to oxygen deprivation in plants and other organisms. Ann Bot 96:507–518

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek L (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  PubMed  CAS  Google Scholar 

  • Chirkova TV (1988) Plant adaptation to hypoxia and anoxia. Leningrad State University Press, Leningrad

    Google Scholar 

  • Crawford RMM, Braendle R (1996) Oxygen deprivation stress in a changing environment. J Exp Bot 47:145–159

    Article  CAS  Google Scholar 

  • DeFalco TA, Bender KW, Snedden WA (2010) Breaking the code: Ca2+ sensors in plant signalling. Biochem J 425:27–40

    Article  CAS  Google Scholar 

  • Dennis ES, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren FU, Grover A, Ismond KP, Good AG, Peacock WJ (2000) Molecular strategies for improving water-logging tolerance in plants. J Exp Bot 51:89–97

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signalling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  • Dolferus R, Ellis M, De Bruxelles G, Trevaskis B, Hoeren F, Dennis ES, Peacock WJ (1997) Strategies of gene action in Arabidopsis during hypoxia. Ann Bot 79(Suppl A):21–31

    CAS  Google Scholar 

  • Drew MC (1997) Oxygen deficiency and root metabolism: injury and acclimation under hypoxia and anoxia. Annu Rev Plant Physiol Plant Mol Biol 48:223–250

    Article  PubMed  CAS  Google Scholar 

  • Emel’yanov VV, Kirchikhina NA, Lastochkin VV, Chirkova TV (2003) Hormonal balance of wheat and rice seedlings under anoxia. Russ J Plant Physiol 50:827–834

    Article  Google Scholar 

  • Fähling M (2008) Cellular oxygen sensing, signalling and how to survive translational arrest in hypoxia. Acta Physiol 195:205–230

    Article  Google Scholar 

  • Fasano JM, Massa GD, Gilroy S (2002) Ionic signalling in plant responses to gravity and touch. J Plant Growth Regul 21:71–88

    Article  PubMed  CAS  Google Scholar 

  • Gibbs J, Greenway H (2003) Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct Plant Biol 30:1–47

    Article  CAS  Google Scholar 

  • Green J, Crack JC, Thomson AJ, LeBrun NE (2009) Bacterial sensors of oxygen. Curr Opin Microbiol 12:145–151

    Article  PubMed  CAS  Google Scholar 

  • Greenway H, Gibbs J (2003) Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes. Funct Plant Biol 30:999–1036

    Article  CAS  Google Scholar 

  • Kader MA, Lindberg S, Seidel T, Golldack D, Yemelyanov V (2007) Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and -sensitive rice (Oryza sativa) cultivars. Physiol Plant 130:99–111

    Article  CAS  Google Scholar 

  • Kende H, Van Der Knaap E, Cho HT (1998) Deepwater rice: a model plant to study stem elongation. Plant Physiol 118:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Kennedy RA, Rumpho ME, Fox TC (1992) Anaerobic metabolism in plants. Plant Physiol 100:1–6

    Article  PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Krumschnabel G, Schwarzbaum PJ, Biasi C, Dorigatti M, Wieser W (1997) Effects of energy limitation on Ca2+ and K+ homeostasis in anoxia-tolerant and anoxia-intolerant hepatocytes. Am J Physiol Regul Integr Comp Physiol 273:307–316

    Google Scholar 

  • Lahiri S, Roy A, Baby SM, Hoshi T, Semenza GL, Prabhakar NR (2006) Oxygen sensing in the body. Progr Biophys Mol Biol 91:249–286

    Article  CAS  Google Scholar 

  • Lindberg S, Strid H (1997) Aluminium induces rapid changes in cytosolic pH and free calcium and potassium concentrations in root protoplasts of wheat (Triticum aestivum). Physiol Plant 99:405–414

    Article  CAS  Google Scholar 

  • Nakazono M, Tsuji H, Li YH, Saisho D, Arimura S, Tsutsumi N, Hirai A (2000) Expression of a gene encoding mitochondrial aldehyde dehydrogenase in rice increases under submerged conditions. Plant Physiol 124:587–598

    Article  PubMed  CAS  Google Scholar 

  • Perata P, Guglielminetti L, Alpi A (1997) Mobilization of endosperm reserves in cereal seeds under anoxia. Ann Bot 79(Suppl. A):49–56

    CAS  Google Scholar 

  • Phillips (1973) Dye expulsion tests for cell viability. In: Kruse PF, Patterson MK (eds) Tissue cultures: methods and application. Chapter 3, section VIII—evaluation of culture dynamics. Academic Press, NY, p 406

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial ROS: contribution to oxidative stress and inter-organellar signalling. Plant Physiol 141:357–366

    Article  PubMed  CAS  Google Scholar 

  • Sauter M (2000) Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaft 87:289–303

    Article  CAS  Google Scholar 

  • Sebastiani L, Lindberg S, Vitagliano C (1999) Cytoplasmic free Ca2+ dynamics in single tomato (Lycopersicon esculentum) protoplasts subjected to chilling temperatures. Physiol Plant 105:239–245

    Article  CAS  Google Scholar 

  • Sedbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH (1996) Transgenic AEQUORIN reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol 111:243–257

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2007) Life with oxygen. Science 318:5847–6202

    Article  Google Scholar 

  • Shishova M, Lindberg S (1999) Auxin-induced cytosolic acidification in wheat leaf protoplasts depends on external concentration of Ca2+. J Plant Physiol 46:190–196

    Google Scholar 

  • Shishova M, Lindberg S (2004) Auxin induces an increase of Ca2+ concentration in the cytosol of wheat leaf protoplasts. J Plant Physiol 161:937–945

    Article  PubMed  CAS  Google Scholar 

  • Shishova M, Yemelyanov V, Rudashevskaya E, Lindberg S (2007) A shift in sensitivity to auxin within development of maize seedlings. J Plant Physiol 164:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC (2009) Ionic loops and rebounds: oxygen-deprivation signalling in plants. In: Baluška F, Mancuso S (eds) Signaling in plants. Springer, Berlin, pp 195–207

    Chapter  Google Scholar 

  • Subbaiah C, Bush DS, Sachs M (1994a) Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells. Plant Cell 6:1747–1762

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah C, Zhang J, Sachs M (1994b) Involvement of intracellular calcium in anaerobic gene expression and survival of maize seedlings. Plant Physiol 105:369–376

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Bush DS, Sachs MM (1998) Mitochondrial contribution to the anoxic Ca2+ signal in maize suspension-cultured cells. Plant Physiol 118:759–771

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Nakazono M, Saisho D, Tsutsumi N, Hirai A (2000) Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in expression of the alternative oxidase 1a gene. FEBS Lett 471:201–204

    Article  PubMed  CAS  Google Scholar 

  • Vartapetian BB, Jackson MB (1997) Plant adaptations to anaerobic stress. Ann Bot 79(Suppl. A):3–20

    CAS  Google Scholar 

  • Virolainen E, Blokhina O, Fagerstedt K (2002) Ca2+-induced high amplitude swelling and cytochrome c release from wheat (Triticum aestivum L.) mitochondria under anoxic stress. Ann Bot 90:509–516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Swedish Institute, Swedish Royal Agricultural Academy (KSLA), Knut and Alice Wallenberg Foundation, Russian Foundation for Basic Research (07-04-01056a and 10-04-01035a) and Russian Ministry of Education and Science (2006-RI-111.0/002/037 and 2010-1.3.2-203-002-008) is gratefully acknowledged. Authors would like to thank Dr. O.B. Blokhina (University of Helsinki) for the help with Oxygrath measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Yemelyanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yemelyanov, V.V., Shishova, M.F., Chirkova, T.V. et al. Anoxia-induced elevation of cytosolic Ca2+ concentration depends on different Ca2+ sources in rice and wheat protoplasts. Planta 234, 271–280 (2011). https://doi.org/10.1007/s00425-011-1396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1396-x

Keywords

Navigation