Skip to main content
Log in

Visualisation of stromules in transgenic wheat expressing a plastid-targeted yellow fluorescent protein

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Stromules are stroma-filled tubules that extend from the plastids in all multicellular plants examined to date. To facilitate the visualisation of stromules on different plastid types in various tissues of bread wheat (Triticum aestivum L.), a chimeric gene construct encoding enhanced yellow fluorescent protein (EYFP) targeted to plastids with the transit peptide of wheat granule-bound starch synthase I was introduced by Agrobacterium-mediated transformation. The gene construct was under the control of the rice Actin1 promoter, and EYFP fluorescence was detected in plastids in all cell types throughout the transgenic plants. Stromules were observed on all plastid types, although the stromule length and abundance varied markedly in different tissues. The longest stromules (up to 40 μm) were observed in epidermal cells of leaves, whereas only short beak-like stromules were observed on chloroplasts in mesophyll cells. Epidermal cells in leaves and roots contained the highest proportion of plastids with stromules, and stromules were also abundant on amyloplasts in the endosperm tissue of developing seeds. The general features of stromule morphology and distribution were similar to those shown previously for tobacco (Nicotiana tabacum L.) and arabidopsis (Arabidopsis thaliana (L.) Heynh.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CTAB:

Cetyl trimethylammonium bromide

DIC:

Differential interference contrast

DPA:

Days post-anthesis

DXR:

1-Deoxyxylulose 5-phosphate reductoisomerase

EYFP:

Enhanced yellow fluorescent protein

GBSSI:

Granule-bound starch synthase I

GFP:

Green fluorescent protein

PAR:

Photosynthetically active radiation

TP:

Transit peptide

References

  • Ainsworth C, Clark J, Balsdon J (1993) Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Mol Biol 22:67–82

    Article  CAS  PubMed  Google Scholar 

  • Arimura S-I, Hirai A, Tsutsumi N (2001) Numerous and highly developed tubular projections from plastids observed in tobacco mesophyll cells. Plant Sci 169:449–454

    Article  Google Scholar 

  • Bechtel DB, Wilson JD (2003) Amyloplast formation and starch granule development in hard red winter wheat. Cereal Chem 80:175–183

    Article  CAS  Google Scholar 

  • Bourett TM, Czymmek KJ, Howard RJ (1999) Ultrastructure of chloroplast protuberances in rice leaves preserved by high-pressure freezing. Planta 208:472–479

    Article  CAS  Google Scholar 

  • Buttrose MS (1960) Submicroscopic development and structure of starch granules in cereal endosperms. J Ultrastruct Res 4:231–257

    Article  CAS  PubMed  Google Scholar 

  • Buttrose MS (1963) Ultrastructure of the developing wheat endosperm. Austr J Biol Sci 16:305–317

    Google Scholar 

  • Faull AF (1935) Elaioplasts in iris: a morphological study. J Arnold Arboretum 16:225–267

    Google Scholar 

  • Firek S, Özcan S, Warner SAJ, Draper J (1993) A wound-induced promoter driving npt-II expression limited to dedifferentiated cells at wound sites is sufficient to allow selection of transgenic shoots. Plant Mol Biol 22:129–142

    Article  CAS  PubMed  Google Scholar 

  • Freeman T, Duysen M (1975) The effect of imposed water stress on the development and ultrastructure of wheat chloroplasts. Protoplasma 83:131–145

    Article  Google Scholar 

  • Giglione C, Serero A, Pierre M, Biosson B, Meinnel T (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19:5916–5929

    Article  CAS  PubMed  Google Scholar 

  • Gray JC, Sullivan J, Hibberd JM, Hansen MR (2001) Stromules: mobile protrusions and interconnections between plastids. Plant Biol 3:223–233

    Article  CAS  Google Scholar 

  • Guilliermond A (1934) Les constituants morphologique du cytoplasme: Le chondriome. Hermann, Paris

    Google Scholar 

  • Gunning BES (2004) Plant cell biology on CD: information for students and a resource for teachers. http://www.plantcellbiologyoncd.com

  • Gunning BES (2005) Plastid stromules: video microscopy of their outgrowth, retraction, tensioning, anchoring, branching, bridging, and tip-shedding. Protoplasma 225:33–42

    Article  PubMed  Google Scholar 

  • Haberlandt G (1888) Die Chlorophyllkörper der Selaginellen. Flora 71:291–308

    Google Scholar 

  • Hans J, Hause B, Strack D, Walter M (2004) Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-d-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiol 134:614–624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson MR, Sattarzadeh A (2008) Dynamic morphology of plastids and stromules in angiosperm plants. Plant Cell Environ 31:646–657

    Article  PubMed  Google Scholar 

  • Heitz E (1937) Untersuchungen über den Bau der Plastiden. I. Die gerichteten Chlorophyllscheiden der Chloroplasten. Planta 26:134–163

    Article  Google Scholar 

  • Hood E, Gelvin S, Melchers L, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Huang J, Taylor JP, Chen J-G, Uhrig JF, Schnell DJ, Nakagawa T, Korth KL, Jones AM (2006) The plastid protein THYLAKOID FORMATION1 and the plasma membrane G-protein GPA1 interact in a novel sugar-signaling mechanism in Arabidopsis. Plant Cell 18:1226–1238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarvis RP (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179:57–285

    Article  Google Scholar 

  • Klösgen RB, Saedler H, Weil J-H (1989) The amyloplast-targeting transit peptide of the waxy protein of maize also mediates protein transport in vitro into chloroplasts. Mol Gen Genet 217:155–161

    Article  PubMed  Google Scholar 

  • Köhler RH, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113:81–89

    PubMed  Google Scholar 

  • Köhler RH, Cao J, Zipfel WR, Webb WW, Hanson MR (1997) Exchange of protein molecules through connections between higher plant plastids. Science 276:2039–2042

    Article  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2003) Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J 35:16–26

    Article  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004a) GFP-labelled Rubisco and aspartate aminotransferase are present in plastid stromules and traffic between plastids. J Exp Bot 55:595–604

    Article  CAS  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004b) Stromules and the dynamic nature of plastid morphology. J Microsc 214:124–137

    Article  CAS  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004c) Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep 23:188–195

    Article  CAS  PubMed  Google Scholar 

  • Langeveld SMJ, van Wijk R, Stuurman N, Kijne JW, de Pater S (2000) B-type granule containing protrusions and interconnections between amyloplasts in developing wheat endosperm revealed by transmission electron microscopy and GFP expression. J Exp Bot 51:1357–1361

    Article  CAS  PubMed  Google Scholar 

  • Li H-M, Chiu C-C (2010) Protein transport into chloroplasts. Annu Rev Plant Biol 61:157–180

    Article  CAS  PubMed  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Natesan SKA, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56:787–797

    Article  CAS  PubMed  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parker ML (1985) The relationship between A-type and B-type starch granules in the developing endosperm of wheat. Cereal Sci 3:271–278

    Article  Google Scholar 

  • Primavesi LF, Wu H, Mudd EA, Day A, Jones HD (2008) Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ, and maize ferredoxin III proteins. Transgenic Res 17:529–543

    Article  CAS  PubMed  Google Scholar 

  • Pyke KA, Howells CA (2002) Plastid and stromule morphogenesis in tomato. Ann Bot 90:559–566

    Article  CAS  PubMed  Google Scholar 

  • Risacher T, Craze M, Bowden S, Wyatt P, Barsby T (2009) Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. Methods Mol Biol 478:115–124

    Article  PubMed  Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–777

    Article  CAS  PubMed  Google Scholar 

  • Sattarzadeh A, Fuller J, Moguel S, Wostrikoff K, Covshoff S, Clemente T, Hanson M, Stern DS (2010) Transgenic maize lines with cell-type specific expression of fluorescent proteins in plastids. Plant Biotechnol J 8:112–125

    Article  CAS  PubMed  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer G-J, Browse JA (2002) Fatty acid export from the chloroplast. Molecular characterisation of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129:1700–1709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schünmann PHD, Surin B, Waterhouse PM (2003) A suite of novel promoters and terminators for plant biotechnology. II. The pPLEX series for use in monocots. Funct Plant Biol 30:453–460

    Article  Google Scholar 

  • Senn G (1908) Die Gestalts- und Lageveränderung der Pflanzen-Chromatophoren. Wilhelm Engelmann Verlag, Leipzig

    Google Scholar 

  • Shen W, Forde B (1989) Efficient transformation of Agrobacterium spp. by high voltage electroporation. Nucleic Acids Res 17:8385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209–216

    Article  CAS  PubMed  Google Scholar 

  • Tirlapur UK, Dahse I, Reiss B, Meurer J, Oelmüller R (1999) Characterization of the activity of a plastid-targeted green fluorescent protein in Arabidopsis. Eur J Cell Biol 78:233–240

    Article  CAS  PubMed  Google Scholar 

  • von Wettstein D (1957) Chlorophyll-Letale und der Submikroskopische Formwechsel der Plastiden. Exp Cell Res 12:427–506

    Article  Google Scholar 

  • Wan J, Blakeley SD, Dennis DT, Ko K (1996) Transit peptides play a major role in the preferential import of proteins into leucoplasts and chloroplasts. J Biol Chem 271:31227–31233

    Article  CAS  PubMed  Google Scholar 

  • Waters MT, Fray RG, Pyke KA (2004) Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J 39:655–667

    Article  PubMed  Google Scholar 

  • Wildman SG, Hongladarom T, Honda SI (1962) Chloroplasts and mitochondria in living plant cells: cinephotomicrographic studies. Science 138:434–436

    Article  CAS  PubMed  Google Scholar 

  • Yan XX, Khan S, Hase T, Emes MJ, Bowsher CG (2006) Differential uptake of photosynthetic and non-photosynthetic proteins by pea root plastids. FEBS Lett 580:6509–6512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Tina Barsby, Pierre Berbezy, Emma Wallington, Jenny Denton, Mel Maranian, Sara Singlehurst, Sarah Bowden, Mel Craze, Julian Hibberd and Christine Newell for help and advice, and Sandra Langeveld for the gift of pPactin-TP-YFP. DJS was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) Cooperative Awards in Science and Engineering (CASE) studentship with Biogemma UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, D.J., Gray, J.C. Visualisation of stromules in transgenic wheat expressing a plastid-targeted yellow fluorescent protein. Planta 233, 961–970 (2011). https://doi.org/10.1007/s00425-011-1351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1351-x

Keywords

Navigation