Skip to main content
Log in

Functional plant cell wall design revealed by the Raman imaging approach

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

A Protocol for this article was published on 23 August 2012

Abstract

Using the Raman imaging approach, the optimization of the plant cell wall design was investigated on the micron level within different tissue types at different positions of a Phormium tenax leaf. Pectin and lignin distribution were visualized and the cellulose microfibril angle (MFA) of the cell walls was determined. A detailed analysis of the Raman spectra extracted from the selected regions, allowed a semi-quantitative comparison of the chemical composition of the investigated tissue types on the micron level. The cell corners of the parenchyma revealed almost pure pectin and the cell wall an amount of 38–49% thereof. Slight lignification was observed in the parenchyma and collenchyma in the top of the leaf and a high variability (7–44%) in the sclerenchyma. In the cell corners and in the cell wall of the sclerenchymatic fibres surrounding the vascular tissue, the highest lignification was observed, which can act as a barrier and protection of the vascular tissue. In the sclerenchyma high variable MFA (4°–40°) was detected, which was related with lignin variability. In the primary cell walls a constant high MFA (57°–58°) was found together with pectin. The different plant cell wall designs on the tissue and microlevel involve changes in chemical composition as well as cellulose microfibril alignment and are discussed and related according to the development and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CC:

Cell corners

Cle:

Chlorenchyma

Col:

Collenchyma

E:

Epidermis

FCA:

Fuchsin–chrysoidin–astrablue

MFA:

Cellulose microfibril angle

P1 to P4:

Position 1 to 4

Par:

Parenchyma

Phl:

Phloem

Sc:

Sheath cells

Scl:

Sclerenchyma

Sp:

Spongy parenchyma

Vb:

Vascular bundle

Xyl:

Xylem

References

  • Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224:1141–1153

    Article  PubMed  CAS  Google Scholar 

  • Agarwal UP, Ralph SA (1997) FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea mariana). Appl Spectrosc 51:1648–1655

    Article  CAS  Google Scholar 

  • Boudet A-M (2000) Lignins and lignification: selected issues. Plant Physiol Biochem 38:81–96

    Article  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Carr DJ, Cruthers NM, Laing RM, Niven BE (2005) Fibers from three cultivars of New Zealand flax (Phormium tenax). Text Res J 75:93–98

    Article  CAS  Google Scholar 

  • Critchfield HJ (1951) Phormium tenax: New Zealand’s native hard fiber. Econ Bot 5:172

    Article  Google Scholar 

  • Cruthers NM, Carr DJ, Laing RM, Niven BE (2006) Structural differences among fibers from six cultivars of Harakeke (Phormium tenax, New Zealand flax). Text Res J 76:601–606

    Article  CAS  Google Scholar 

  • Duchemin B, Staiger MP (2009) Treatment of Harakeke fiber for biocomposites. J Appl Polym Sci 112:2710–2715

    Article  CAS  Google Scholar 

  • Engels FM, Jung HG (1998) Alfalfa stem tissues: cell-wall development and lignification. Ann Bot (London) 82:561–568

    Article  Google Scholar 

  • Etzold H (2002) Simultanfärbung von Pflanzenschnitten mit Fuchsin, Chrysoidin und Astrablau. Mikrokosmos 91:316

    Google Scholar 

  • Gierlinger N, Schwanninger M (2006) Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol 140:1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Gierlinger N, Schwanninger M (2007) The potential of Raman microscopy and Raman imaging in plant research. Spectrosc Int J 21:69–89

    CAS  Google Scholar 

  • Gierlinger N, Luss S, Konig C, Konnerth J, Eder M, Fratzl P (2010) Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging. J Exp Bot 61:587–595

    Article  PubMed  CAS  Google Scholar 

  • Gindl W, Teischinger A (2002) Axial compression strength of Norway spruce related to structural variability and lignin content. Compos Part A Appl Sci 33:1623–1628

    Article  Google Scholar 

  • Gindl W, Gupta HS, Schöberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A Mater 79:2069–2073

    CAS  Google Scholar 

  • Harris W, Scheele SM, Brown CE, Sedcole JR (2005a) Ethnobotanical study of growth of Phormium varieties used for traditional Maori weaving. N Z J Bot 43:83–118

    Article  Google Scholar 

  • Harris W, Scheele SM, Forrester GJ (2005b) Varietal differences and environmental effects on leaves of Phormium harvested for traditional Maori weaving. N Z J Bot 43:791–816

    Article  Google Scholar 

  • Jayaraman K, Halliwell R (2009) Harakeke (Phormium tenax) fibre-waste plastics blend composites processed by screwless extrusion. Compos Part B Eng 40:645–649

    Article  Google Scholar 

  • Jungnikl K, Koch G, Burgert I (2008) A comprehensive analysis of the relation of cellulose microfibril orientation and lignin content in the S2 layer of different tissue types of spruce wood (Picea abies (L.) Karst.). Holzforschung 62:475–480

    Article  CAS  Google Scholar 

  • Keckes J, Burgert I, Fruhmann K, Muller M, Kolln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg S, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810–814

    Article  PubMed  CAS  Google Scholar 

  • Kennedy CJ, Sturcova A, Jarvis MC, Wess TJ (2007) Hydration effects on spacing of primary-wall cellulose microfibrils: a small angle X-ray scattering study. Cellulose 14:401–408

    Article  CAS  Google Scholar 

  • King MJ, Vincent JFV, Harris W (1996) Curling and folding of leaves of monocotyledons—a strategy for structural stiffness. N Z J Bot 34:411–416

    Google Scholar 

  • Le Guen MJ, Newman RH (2007) Pulped Phormium tenax leaf fibres as reinforcement for epoxy composites. Compos Part A Appl Sci 38:2109–2115

    Article  Google Scholar 

  • Lewis NG, Yamamoto E (1990) Lignin—occurrence, biogenesis and biodegradation. Annu Rev Plant Phys 41:455–496

    Article  CAS  Google Scholar 

  • McIlroy RJ (1949) The hemicellulose of Phormium tenax (N. Z. flax). Part II. The constitution of the aldotrionic acid. J Chem Soc: 121–124

  • McIlroy RJ, Holmes GS, Mauger RP (1945) A preliminary study of the polyuronide hemicellulose of Phormium tenax (N. Z. flax). J Chem Soc: 796–799

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  PubMed  CAS  Google Scholar 

  • Musel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, Schopfer P (1997) Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta 201:146–159

    Article  Google Scholar 

  • Newman RH, Clauss EC, Carpenter JEP, Thumm A (2007) Epoxy composites reinforced with deacetylated Phormium tenax leaf fibres. Compos Part A Appl Sci 38:2164–2170

    Article  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. An engineering approach to plant form and function. The University of Chicago Press, Chicago

    Google Scholar 

  • Rangasamy M, Rathinasabapathi B, McAuslane HJ, Cherry RH, Nagata RT (2009) Role of leaf sheath lignification and anatomy in resistance against southern chinch bug (Hemiptera: Blissidae) in St. Augustine grass. J Econ Entomol 102:432–439

    Article  PubMed  Google Scholar 

  • Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls. Philos Mag A 79:2173–2184

    Article  CAS  Google Scholar 

  • Rüggeberg M, Speck T, Paris O, Lapierre C, Pollet B, Koch G, Burgert I (2008) Stiffness gradients in vascular bundles of the palm Washingtonia robusta. Proc R Soc B 275:2221–2229

    Article  PubMed  Google Scholar 

  • Santulli C, Jeronimidis G, De Rosa IM, Sarasini F (2009) Mechanical and falling weight impact properties of unidirectional phormium fibre/epoxy laminates. Express Polym Lett 3:650–656

    Article  CAS  Google Scholar 

  • Schmidt M, Schwartzberg AM, Perera PN, Weber-Bargioni A, Carroll A, Sarkar P, Bosneaga E, Urban JJ, Song J, Balakshin MY, Capanema EA, Auer M, Adams PD, Chiang VL, Schuck PJ (2009) Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa. Planta 230:589–597

    Article  PubMed  CAS  Google Scholar 

  • Sims IM, Cairns AJ, Furneaux RH (2001) Structure of fructans from excised leaves of New Zealand flax. Phytochemistry 57:661–668

    Article  PubMed  CAS  Google Scholar 

  • Synytsya A, Copikova J, Matejka P, Machovic V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

  • Thimm JC, Burritt DJ, Ducker WA, Melton LD (2009) Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study. J Struct Biol 168:337–344

    Article  PubMed  CAS  Google Scholar 

  • Turner AJ (1949) The structure of textile fibres. VIII. The long vegetable fibres. J Text I 40:972–982

    Article  Google Scholar 

  • Via BK, So CL, Shupe TF, Groom LH, Wikaira J (2009) Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position. Compos Part A App Sci 40:60–66

    Article  Google Scholar 

  • Vincent JFV (1999) From cellulose to cell. J Exp Biol 202:3263–3268

    PubMed  CAS  Google Scholar 

  • Wehi PM (2009) Indigenous ancestral sayings contribute to modern conservation partnerships: examples using Phormium tenax. Ecol Appl 19:267–275

    Article  PubMed  Google Scholar 

  • Wehi PM, Clarkson BD (2007) Biological flora of New Zealand 10. Phormium tenax, harakeke, New Zealand flax. N Z J Bot 45:521–544

    Article  Google Scholar 

  • Wuyts N, Lognay G, Verscheure M, Marlier M, De Waele D, Swennen R (2007) Potential physical and chemical barriers to infection by the burrowing nematode Radopholus similis in roots of susceptible and resistant banana (Musa spp.). Plant Pathol 56:878–890

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Notburga Gierlinger acknowledges financial support by the APART programme of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Notburga Gierlinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S., Müssig, J. & Gierlinger, N. Functional plant cell wall design revealed by the Raman imaging approach. Planta 233, 763–772 (2011). https://doi.org/10.1007/s00425-010-1338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1338-z

Keywords

Navigation