Skip to main content
Log in

Change in wall composition of transfer and aleurone cells during wheat grain development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1–3)(1–4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1–3)(1–4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1–3)(1–4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

DIC:

Differential interference contrast

FT-IR:

Fourier transform infrared

Ig:

Immunoglobulin

mAb:

Monoclonal antibody

anti-AX1:

Monoclonal antibody against arabinoxylan

PBS:

Phosphate-buffered saline

pAb:

Polyclonal serum

pAb:

Anti-FerAra polyclonal serum 5-O-Fer-Ara

References

  • Allerdings E, Ralph J, Steinhart H, Bunzel M (2006) Isolation and structural identification of complex feruloylated heteroxylan side-chains from maize bran. Phytochemistry 67:1276–1286

    Article  CAS  PubMed  Google Scholar 

  • Antoine C, Peyron S, Mabille F, Lapierre C, Bouchet B, Abecassis J, Rouau X (2003) Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. J Agric Food Chem 51:2026–2033

    Article  CAS  PubMed  Google Scholar 

  • Barron C, Robert P, Guillon F, Saulnier L, Rouau X (2006) Structural heterogeneity of wheat arabinoxylans revealed by Raman spectroscopy. Carbohydr Res 341:1186–1191

    Article  CAS  PubMed  Google Scholar 

  • Barron C, Surget A, Rouau X (2007) Relative amounts of tissues in mature wheat (Triticum aestivum L.) grain and their carbohydrate and phenolic acid composition. J Cereal Sci 45:88–96

    Article  CAS  Google Scholar 

  • Becraft PW (2001) Cell fate specification in the cereal endosperm. Semin Cell Dev Biol 12:387–394

    Article  CAS  PubMed  Google Scholar 

  • Carvajal-Milan E, Landillon V, Morel M-H, Rouau X, Doublier J-L, Micard V (2005) Arabinoxylans gels: impact of the feruloylation degree on their structure and properties. Biomacromolecules 6:309–317

    Article  Google Scholar 

  • Cochrane MP, Duffus CM (1980) Nucellar projection and modified aleurone in the crease region of developing caryopses of barley (Hordeum vulgare L. var. distichum. Protoplasma 103:361–375

    Article  Google Scholar 

  • Dervilly-Pinel G (2001) Etude des relations entre la structure et les propriétés physicochimiques des arabinoxylanes hydro-solubles de l’albumen de blé. Dissertation, Université de Paris VII, Université de Paris XI, ENSIA et INA-PG

  • Fincher GB, Stone BA (1986) Cell walls and their components in cereal grain technology. Adv Cereal Sci Tech 8:207–295

    CAS  Google Scholar 

  • Guillon F, Tranquet O, Quillien L, Utille J-P, Ordaz-Ortiz JJ, Saulnier L (2004) Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical localization of arabinoxylans in cell walls of the wheat grain. J Cereal Sci 40:167–182

    Article  CAS  Google Scholar 

  • Höije A, Sternemalm E, Heikkinen S, Tenkanen M, Gatenholm P (2008) Material properties of films from enzymatically tailored arabinoxylans. Biomacromolecules 9:2042–2047

    Article  PubMed  Google Scholar 

  • Ishii T, Hiroi T (1990) Linkage of phenolic acids to cell-wall polysaccharides of bamboo shoot. Carbohydr Res 206:297–310

    Article  CAS  PubMed  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48

    Article  CAS  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (2007) Arabinoxylans: technologically and nutritionally functional plant polysaccharides. In: Biliaderis CG, Izydorczyk MS (eds) Functional food carbohydrates. CRC Press, Boca Raton, pp 249–290

    Google Scholar 

  • Izydorczyk K, Dexter JE (2008) Barley glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products—a review. Food Res Int 41:850–868

    Article  CAS  Google Scholar 

  • Izydorczyk MS, McGregor AW (2000) Evidence of intermolecular interactions of β-glucans and arabinoxylans. Carbohydr Polym 41:417–420

    Article  CAS  Google Scholar 

  • Izydorczyk M, Biliaderis CG, Bushuk W (1991) Physical-properties of water-soluble pentosans from different wheat-varieties. Cereal Chem 68:145–150

    CAS  Google Scholar 

  • Izydorczyk MS, Macri LJ, MacGregor (1998) Structure and physicochemical properties of barley non-starch polysccharides. II. Alkali-extractable β-glucans and arabinoxylan. Carbohydr Polym 35:259–269

  • Jamme F, Robert R, Bouchet B, Saulnier L, Dumas P, Guillon F (2008) Aleurone cell walls of wheat grain: high spatial resolution investigation using synchrotron infrared microspectroscopy. Appl Spectrosc 62:895–900

    Article  CAS  PubMed  Google Scholar 

  • Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) A FT-IR study of plant cell model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  CAS  Google Scholar 

  • MacMaster GS, Whilhem WW (1997) Growing degree-days: one equation, two interpretations. Agric For Meteorol 87:291–300

    Article  Google Scholar 

  • Meikle PJ, Hoogenraad NJ, Bonig I, Clarke A, Stone BA (1994) A (1–3)(1–4)-β-glucan-specific monoclonal-antibody and its use in the quantitation and immunocytochemical location of (1–3)(1–4)-β-d-glucans. Plant J 5:1–9

    Article  CAS  PubMed  Google Scholar 

  • Olsen (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16(Suppl):S214–S227

  • Philippe S, Saulnier L, Guillon F (2006a) Arabinoxylan and (1→3),(1→4)-β-glucan deposition in cell walls during wheat endosperm development. Planta 224:1–13

    Article  Google Scholar 

  • Philippe S, Robert P, Barron C, Saulnier L, Guillon F (2006b) Deposition of cell wall polysaccharides in wheat endosperm during grain development: Fourier transformed-infrared microspectroscopy study. J Agric Food Chem 54:2303–2308

    Article  CAS  PubMed  Google Scholar 

  • Philippe S, Barron C, Robert P, Saulnier L, Guillon F (2006c) Characterization using Raman microspectroscopy of arabinoxylans in the walls of different cell types during the development of wheat endosperm. J Agric Food Chem 54:5113–5119

    Article  CAS  PubMed  Google Scholar 

  • Philippe S, Tranquet O, Utille J-P, Saulnier L, Guillon F (2007) Ferulic acid in walls of endosperm of mature and developing wheat. Planta 225:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Piot O, Autran J-C, Manfait M (2000) Spatial distribution of protein and phenolic constituents in wheat grain as probed by confocal Raman spectroscopy. J Cereal Sci 32:57–71

    Article  CAS  Google Scholar 

  • Piot O, Autran J-C, Manfait M (2001) Investigation by confocal Raman microspectroscopy of the molecular factors responsible for grain cohesion in the Triticum aestivum bread wheat. Role of the cell walls in the starchy endosperm. J Cereal Sci 34:191–205

    Article  CAS  Google Scholar 

  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung H-JG (1994) Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc 116:9448–9456

    Article  CAS  Google Scholar 

  • Rattan O, Izydorczyk MS, Biliaderis CG (1994) Structure and rheological behaviour of arabinoxylans from Canadian bread wheat flours. Lebenson Wiss Technol 27:550–555

    Article  CAS  Google Scholar 

  • Rhodes DI, Sadek M, Stone BA (2002) Hydroxycinnamic acids in walls of wheat aleurone cells. J Cereal Sci 36:67–81

    Article  CAS  Google Scholar 

  • Robert P, Marquis M, Barron C, Guillon F, Saulnier L (2005) FT-IR investigation of cell wall polysaccharides from cereal grains. Arabinoxylan infrared assignment. J Agric Food Chem 53:7014–7018

    Article  CAS  PubMed  Google Scholar 

  • Sabelli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol 149:14–26

    Article  CAS  PubMed  Google Scholar 

  • Saulnier L, Guillon F, Sado P-E, Rouau X (2007a) Plant cell wall polysaccharides in storage organs: xylans (food applications). In: Kamerling J, Boons G-J, Lee Y, Suzuki A, Taniguchi N, Voragen AGJ (eds) Comprehensive glycoscience, vol 2. Elsevier, Oxford, pp 653–689

    Chapter  Google Scholar 

  • Saulnier L, Sado P-E, Branlard G, Charmet G, Guillon F (2007b) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281

    Article  CAS  Google Scholar 

  • Saulnier L, Robert P, Grintchenko M, Jamme F, Bouchet B, Guillon F (2009) Wheat endosperm cell walls: spatial heterogeneity of polysaccharide structure and composition using micro-scale enzymatic fingerprinting and FT-IR microspectroscopy. J Cereal Sci 50:312–317

    Article  CAS  Google Scholar 

  • Thompson RD, Hueros G, Becker H, Maitz M (2001) Development and functions of seed transfer cells. Plant Sci 160:775–783

    Article  CAS  PubMed  Google Scholar 

  • Toole GA, Barron C, Le Gall G, Colquhoun IJ, Shewry PR, Mills ENC (2009) Remodelling of arabinoxylan in wheat (Triticum aestivum) endosperm cell walls during grain filling. Planta 229:667–680

    Article  CAS  PubMed  Google Scholar 

  • Toole GA, Le Gall G, Colquhoun IJ, Nemeth C, Saulnier L, Lovegrove A, Pellny T, Wilkinson MD, Freeman J, Mitchell RAC, Mills ENC, Shewry PR (2010) Temporal and spatial changes in cell wall composition in developing grains of wheat cv. Hereward. Planta 232:677–689

    Article  CAS  PubMed  Google Scholar 

  • Tranquet O, Saulnier L, Utille J-P, Ralph J, Guillon F (2009) Monoclonal antibodies to p-coumarate. Phytochemistry 70:1366–1373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to T. Chevalier (UR1268 Biopolymères Interactions Assemblages, 44300 Nantes, France) for technical assistance with microscopy. Synchrotron FT-IR experiments have been performed at the synchrotron SOLEIL on the SMIS beamline in the framework of the proposal 20060268.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Robert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, P., Jamme, F., Barron, C. et al. Change in wall composition of transfer and aleurone cells during wheat grain development. Planta 233, 393–406 (2011). https://doi.org/10.1007/s00425-010-1306-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1306-7

Keywords

Navigation