Skip to main content

Advertisement

Log in

Large-scale analysis of phosphorylated proteins in maize leaf

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phosphorylation is an ubiquitous regulatory mechanism governing the activity, subcellular localization, and intermolecular interactions of proteins. To identify a broad range of phosphoproteins from Zea mays, we enriched phosphopeptides from Zea mays leaves using titanium dioxide microcolumns and then extensively fractionated and identified the phosphopeptides by mass spectrometry. A total of 165 unique phosphorylation sites with a putative role in biological processes were identified in 125 phosphoproteins. Most of these proteins are involved in metabolism, including carbohydrate and protein metabolism. We identified novel phosphorylation sites on translation initiation factors, splicing factors, nucleolar RNA helicases, and chromatin-remodeling proteins such as histone deacetylases. Intriguingly, we also identified phosphorylation sites on several proteins associated with photosynthesis, and we speculate that these sites may be involved in carbohydrate metabolism or electron transport. Among these phosphoproteins, phosphoenolpyruvate carboxylase and NADH: nitrate reductase (NR) which catalyzes the rate-limiting and regulated step in the pathway of inorganic nitrogen assimilation were identified. A conserved phosphorylation site was found in the cytochrome b5 heme-binding domain of NADH: nitrate reductase, suggesting that NADH: nitrate reductase is phosphorylated by the same protein kinase or highly related kinases. These data demonstrate that the pathways that regulate diverse processes in plants are major targets of phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TiO2 :

Titanium dioxide

NanoLC–MS/MS:

Nano liquid chromatography-tandem mass spectrometry

PEPC:

Phosphoenolpyruvate carboxylase

NADH:

Nitrate reductase

HDACs:

Histone deacetylases

References

  • Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC (1996) Identification of Ser-543 as the major regulatory phosphorylation site in spinach leaf nitrate reductase. Plant Cell 8:505–517

    Article  CAS  PubMed  Google Scholar 

  • Bai ZF, Liu BY, Li WH, Li P, Wang HL, Wang HX (2009) The development of an improved simple titanium dioxide enrichment method for phosphoproteomic research. Rapid Commun Mass Spectrom 23:3013–3017

    Article  CAS  PubMed  Google Scholar 

  • Breitholtz HL, Srivastava R, Tyystjärvi E, Rintamäki E (2005) LHC II protein phosphorylation in leaves of Arabidopsis thaliana mutants deficient in non-photochemical quenching. Photosynth Res 84:217–223

    Article  CAS  PubMed  Google Scholar 

  • De Nisi P, Dell’Orto M, Pirovano L, Zocchi G (1999) Calcium-dependent phosphorylation regulates the plasma-membrane H+-ATPase activity of maize (Zea mays L.) roots. Planta 209:187–194

    Article  PubMed  Google Scholar 

  • DeMartino GN, Gillette TG (2007) Proteasomes: machines for all reasons. Cell 129:659–662

    Article  CAS  PubMed  Google Scholar 

  • Durek P, Schmidt R, Heazlewood JL, Jones A, MacLean D, Nagel A, Kersten B, Schulze WX (2010) Phosphat: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res 38:D828–D834

    Article  CAS  PubMed  Google Scholar 

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  PubMed  Google Scholar 

  • Encinar JA, Mallo GV, Mizyrycki C, Giono L, González-Ros JM, Rico M, Cánepa E, Moreno S, Neira JL, Iovanna JL (2001) Human p8 is a HMG-I/Y-like protein with DNA binding activity enhanced by phosphorylation. J Biol Chem 276:2742–2751

    Article  CAS  PubMed  Google Scholar 

  • Galasinski SC, Resing KA, Goodrich JA, Ahn NG (2002) Phosphatase inhibition leads to histone deacetylases 1 and 2 phosphorylation and disruption of corepressor interactions. J Biol Chem 277:19618–19626

    Article  CAS  PubMed  Google Scholar 

  • Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37:D960–D962

    Article  CAS  PubMed  Google Scholar 

  • Grosschedl R, Giese K, Pagel J (1994) HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet 10:94–100

    Article  CAS  PubMed  Google Scholar 

  • Huber SC, Hardin SC (2004) Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol 7:318–322

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Lehn DA, Reeves R (1989) Alternative processing of mRNAs encoding mammalian chromosomal high-mobility-group proteins HMG-I and HMG-Y. Mol Cell Biol 9:2114–2123

    CAS  PubMed  Google Scholar 

  • Kai Y, Matsumura H, Izui K (2003) Phosphoenolpyruvate carboxylase: three-dimensional structure and molecular mechanisms. Arch Biochem Biophys 414:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kaiser WM, Weiner H, Kandlbinder A, Tsai CB, Rockel P, Sonoda M, Planchet E (2002) Modulation of nitrate reductase: some new insights, an unusual case and a potentially important side reaction. J Exp Bot 53:875–882

    Article  CAS  PubMed  Google Scholar 

  • Koroleva OA, Calder G, Pendle AF, Kim SH, Lewandowska D, Simpson CG, Jones IM, Brown JWS, Shaw PJ (2009) Dynamic behavior of Arabidopsis eIF4A-III, putative core protein of exon junction complex: fast relocation to nucleolus and splicing speckles under hypoxia. Plant Cell 21:1592–1606

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Smalle JA (2008) Structure, function and regulation of plant proteasomes. Biochimie 90:324–335

    Article  CAS  PubMed  Google Scholar 

  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Cho HS, Yoon GM, Ahn JW, Kim HH, Pai HS (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with ntrpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J 33:825–840

    Article  CAS  PubMed  Google Scholar 

  • Lonosky PM, Zhang X, Honavar VG, Dobbs DL, Fu A, Rodermel SR (2004) A proteomic analysis of maize chloroplast biogenesis. Plant Physiol 134:560–574

    Article  CAS  PubMed  Google Scholar 

  • Lopato S, Gattoni R, Fabini G, Stevenin J, Barta A (1999) A novel family of plant splicing factors with a Zn knuckle motif: examination of RNA binding and splicing activities. Plant Mol Biol 39:761–773

    Article  CAS  PubMed  Google Scholar 

  • Lu TC, Meng LB, Yang CP, Liu GF, Liu GJ, Ma W, Wang BC (2008) A shotgun phosphoproteomics analysis of embryos in germinated maize seeds. Planta 228:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Majeran W, Cai Y, Sun Q, van Wijk KJ (2005) Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell 17:3111–3140

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Murata Y, Yang Y, Munemasa S, Wang YF, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR (2006) CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biol 4:e327

    Article  PubMed  Google Scholar 

  • Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci 5:75–80

    Article  CAS  PubMed  Google Scholar 

  • Nørregaard Jensen O (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8:33–41

    Article  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2:1234–1243

    Article  PubMed  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405

    Article  PubMed  Google Scholar 

  • Nühse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51:931–940

    Article  PubMed  Google Scholar 

  • Ogawa N, Okumura S, Izui K (1992) A Ca2+-dependent protein kinase phosphorylates phosphoenolpyruvate carboxylase in maize. FEBS Lett 302:86–88

    Article  CAS  PubMed  Google Scholar 

  • Pinkse MWH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2d-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943

    Article  CAS  PubMed  Google Scholar 

  • Pinkse MWH, Mohammed S, Gouw JW, van Breukelen B, Vos HR, Heck AJR (2008) Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. J Proteome Res 7:687–697

    Article  CAS  PubMed  Google Scholar 

  • Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314:191–225

    Article  CAS  PubMed  Google Scholar 

  • Portis AR, Parry MAJ (2007) Discoveries in Rubisco (ribulose 1, 5-bisphosphate carboxylase/oxygenase): A historical perspective. Photosynth Res 94:121–143

    Article  CAS  PubMed  Google Scholar 

  • Qiu QS, Hardin SC, Mace J, Brutnell TP, Huber SC (2007) Light and metabolic signals control the selective degradation of sucrose synthase in maize leaves during de-etiolation. Plant Physiol 144:468–478

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan AV, Devi MT, Raghavendra AS (1994) Molecular biology of C4 phosphoenolpyruvate carboxylase: structure, regulation and genetic engineering. Photosynth Res 39:115–135

    Article  CAS  Google Scholar 

  • Reiland S, Messerli G, Baerenfaller K, Gerrits B, Endler A, Grossmann J, Gruissem W, Baginsky S (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol 150:889–903

    Article  CAS  PubMed  Google Scholar 

  • Roberts JKM, Aubert S, Gout E, Bligny R, Douce R (1997) Cooperation and competition between adenylate kinase, nucleoside diphosphokinase, electron transport, and ATP synthase in plant mitochondria studied by 31P-nuclear magnetic resonance. Plant Physiol 113:191–199

    CAS  PubMed  Google Scholar 

  • Rogers GW, Richter NJ, Lima WF, Merrick WC (2001) Modulation of the helicase activity of elF4A by eIF4B, eIF4H, and eIF4F. J Biol Chem 276:30914–30922

    Article  CAS  PubMed  Google Scholar 

  • Rossignol M (2006) Proteomic analysis of phosphorylated proteins. Curr Opin Plant Biol 9:538–543

    Article  CAS  PubMed  Google Scholar 

  • Sacco-Bubulya P, Spector DL (2002) Disassembly of interchromatin granule clusters alters the coordination of transcription and pre-mRNA splicing. J Cell Biol 156:425–436

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Jakob A, Nordheim A, Hochholdinger F (2006) Proteomic analysis of shoot-borne root initiation in maize (Zea mays L.). Proteomics 6:2530–2541

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Li P, Ni RJ, Ritchie M, Yang CP, Liu GF, Ma W, Liu GJ, Ma L, Li SJ (2009) Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. Mol Cell Proteomics 8:2443–2460

    Article  CAS  PubMed  Google Scholar 

  • Siegenthaler U, Sarmiento JL (1993) Atmospheric carbon dioxide and the ocean. Nature 365:119–125

    Article  CAS  Google Scholar 

  • Stemmer C, Leeming DJ, Franssen L, Grimm R, Grasser KD (2003) Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2α. Biochemistry 42:3503–3508

    Article  CAS  PubMed  Google Scholar 

  • Stojdl DF, Bell JC (1999) SR protein kinases: the splice of life. Biochem Cell Biol 77:293–298

    Article  CAS  PubMed  Google Scholar 

  • Thanos D, Maniatis T (1992) The high mobility group protein HMG I (Y) is required for NF-[kappa] B-dependent virus induction of the human IFN-[beta] gene. Cell 71:777–789

    Article  CAS  PubMed  Google Scholar 

  • Thurston G, Regan S, Rampitsch C, Xing T (2005) Proteomic and phosphoproteomic approaches to understand plant–pathogen interactions. Physiol Mol Plant Pathol 66:3–11

    Article  CAS  Google Scholar 

  • Tillemans V, Leponce I, Rausin G, Dispa L, Motte P (2006) Insights into nuclear organization in plants as revealed by the dynamic distribution of Arabidopsis SR splicing factors. Plant Cell 18:3218

    Article  CAS  PubMed  Google Scholar 

  • Tsai SC, Seto E (2002) Regulation of histone deacetylase 2 by protein kinase CK2. J Biol Chem 277:31826–31833

    Article  CAS  PubMed  Google Scholar 

  • van Bentem S, Anrather D, Roitinger E, Djamei A, Hufnagl T, Barta A, Csaszar E, Dohnal I, Lecourieux D, Hirt H (2006a) Phosphoproteomics reveals extensive in vivo phosphorylation of Arabidopsis proteins involved in RNA metabolism. Nucleic Acids Res 34:3267–3278

    Article  Google Scholar 

  • van Bentem SF, Roitinger E, Anrather D, Csaszar E, Hirt H (2006b) Phosphoproteomics as a tool to unravel plant regulatory mechanisms. Physiol Plant 126:110–119

    Article  Google Scholar 

  • Verdin E, Dequiedt F, Kasler HG (2003) Class II histone deacetylases: versatile regulators. Trends Genet 19:286–293

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    Article  PubMed  Google Scholar 

  • Wei F, Coe WN, Bharti AK, Engler F, Butler HRK, Goicoechea JL, Chen M, Lee S, Fuks G, Sanchez-Villeda H (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123

    Article  PubMed  Google Scholar 

  • Whitley MZ, Thanos D, Read MA, Maniatis T, Collins T (1994) A striking similarity in the organization of the E-selectin and beta interferon gene promoters. Mol Cell Biol 14:6464–6475

    CAS  PubMed  Google Scholar 

  • Williams CM, Zhang G, Michalak M, Cass DD (1997) Calcium-induced protein phosphorylation and changes in levels of calmodulin and calreticulin in maize sperm cells. Sex Plant Reprod 10:83–88

    Article  CAS  Google Scholar 

  • Wolschin F, Wienkoop S, Weckwerth W (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5:4389–4397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the Fundamental Research Funds for the Central Universities (DL09EA01), Key Project of Science and Technology of the Ministry of Education of the People’s Republic of China (Grant 108048), and the Natural Sciences Foundation of Heilongjiang Province (Grant C200930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai-Chen Wang.

Additional information

Y.-D. Bi, H.-X. Wang, and T.-C. Lu have contributed equally to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, YD., Wang, HX., Lu, TC. et al. Large-scale analysis of phosphorylated proteins in maize leaf. Planta 233, 383–392 (2011). https://doi.org/10.1007/s00425-010-1291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1291-x

Keywords

Navigation