Skip to main content
Log in

Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In maize kernel development, the onset of grain-filling represents a major developmental switch that correlates with a massive reprogramming of gene expression. We have isolated chromosomal linker histones from developing maize kernels before (11 days after pollination, dap) and after (16 dap) initiation of storage synthesis. Six linker histone gene products were identified by MALDI-TOF mass spectrometry. A marked shift of around 4 pH units was observed for the linker histone spot pattern after 2D-gel electrophoresis when comparing the proteins of 11 and 16 dap kernels. The shift from acidic to more basic protein forms suggests a reduction in the level of post-translational modifications of linker histones during kernel development. Analysis of their DNA-binding affinity revealed that the different linker histone gene products bind double-stranded DNA with similar affinity. Interestingly, the linker histones isolated from 16 dap kernels consistently displayed a lower affinity for DNA than the proteins isolated from 11 dap kernels. These findings suggest that the affinity for DNA of the linker histones may be regulated by post-translational modification and that the reduction in DNA affinity could be involved in a more open chromatin during storage synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

dap:

Days after pollination

MALDI-TOF:

Matrix-assisted laser desorption/ionisation–time-of-flight mass spectrometry

TCA:

Trichloroacetic acid

References

  • Alami R, Fan Y, Pack S, Sonbuchner TM, Besse A, Lin Q, Greally JM, Skoultchi AI, Bouhassira EE (2003) Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci USA 100:5920–5925

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi R, Gantt JS (1999a) Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Mol Biol 41:159–169

    Article  CAS  PubMed  Google Scholar 

  • Ascenzi R, Gantt JS (1999b) Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. Chromosoma 108:345–355

    Article  CAS  PubMed  Google Scholar 

  • Baroux C, Pecinka A, Fuchs J, Schubert I, Grossniklaus U (2007) The triploid endosperm genome of Arabidopsis adopts a peculiar, parental-dosage-dependent chromatin organization. Plant Cell 19:1782–1794

    Article  CAS  PubMed  Google Scholar 

  • Bers EP, Singh NP, Pardonen VA, Lutova LA, Zalensky AO (1992) Nucleosomal structure and histone H1 subfractional composition of pea (Pisum sativum) root nodules, radicles and callus chromatin. Plant Mol Biol 20:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Bustin M, Catez F, Lim J-H (2005) The dynamics of histone H1 function in chromatin. Mol Cell 17:617–620

    Article  CAS  PubMed  Google Scholar 

  • Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Consonni G, Gavazzi G, Dolfini S (2005) Genetic analysis as a tool to investigate the molecular mechanisms underlying seed development in maize. Ann Bot 96:353–362

    Article  CAS  PubMed  Google Scholar 

  • Costa LM, Gutièrrez-Marcos JF, Dickinson HG (2004) More than a yolk: the short life and complex times of the plant endosperm. Trends Plant Sci 9:507–514

    Article  CAS  PubMed  Google Scholar 

  • Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    Article  CAS  PubMed  Google Scholar 

  • Gantt JS, Lenvik TR (1991) Arabidopsis thaliana H1 histones. Analysis of two members of a small gene family. Eur J Biochem 202:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Gobom J, Nordhoff E, Migorodskaya E, Ekman R, Roepstorff P (1999) Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34:105–116

    Article  CAS  PubMed  Google Scholar 

  • Godde JS, Ura K (2008) Cracking the enigmatic linker histone code. J Biochem 143:287–293

    Article  CAS  PubMed  Google Scholar 

  • Grasser KD, Wurz A, Feix G (1991) Isolation and characterisation of high-mobility-group proteins from maize. Planta 185:350–355

    Article  CAS  Google Scholar 

  • Grasser KD, Grimm R, Ritt C (1996) Maize chromosomal HMGc: two closely related structure-specific DNA-binding proteins specify a second type of plant HMG-box protein. J Biol Chem 271:32900–32906

    Article  CAS  PubMed  Google Scholar 

  • Ivanchenko M, Georgieva E, Uschewa A, Avramova Z (1987) A study on the heterogeneity of histone H1 from dry maize embryos. Eur J Biochem 162:339–344

    Article  CAS  PubMed  Google Scholar 

  • Izzo A, Kamieniarz K, Schneider R (2008) The histone H1 family: specific members, specific functions? Biol Chem 389:333–343

    Article  CAS  PubMed  Google Scholar 

  • Jerzmanowski A (2004) The linker histones. In: Zlatanova J, Leuba SH (eds) Chromatin structure and dynamics: state-of-the-art. Elsevier, Amsterdam/New York, pp 75–102

    Chapter  Google Scholar 

  • Jerzmanowski A, Przewloka M, Grasser KD (2000) Linker histones and HMG1 proteins of higher plants. Plant Biol 2:586–597

    Article  CAS  Google Scholar 

  • Kasinky HE, Lewis JD, Dacks JB, Ausio J (2001) Origin of H1 linker histones. FASEB J 15:34–42

    Article  Google Scholar 

  • Kirihara JA, Hunsberger JP, Mahoney WC, Messing JW (1988) Differential expression of a gene for a methioninerich storage protein in maize. Mol Gen Genet 211:477–487

    Article  CAS  PubMed  Google Scholar 

  • Launholt D, Merkle T, Houben A, Schulz A, Grasser KD (2006) Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus. Plant Cell 18:2904–2918

    Article  CAS  PubMed  Google Scholar 

  • Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance and transcriptome in Arabidopsis. J Mol Biol 384:9–21

    Article  CAS  PubMed  Google Scholar 

  • Lopes MA, Larkins BA (1993) Endosperm origin, development, and function. Plant Cell 5:1383–1399

    Article  CAS  PubMed  Google Scholar 

  • Meergans T, Albig W, Doenecke D (1997) Varied expression patterns of human H1 histone genes in different cell lines. DNA Cell Biol 16:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Nelson O, Pan D (1990) Starch synthesis in maize endosperms. Annu Rev Plant Physiol Plant Mol Biol 46:475–496

    Article  Google Scholar 

  • Olivieri E, Viotti A, Lauria M, Simò-Alfonso E, Righetti PG (1999) Variety identification in maize lines via capillary electrophoresis of zeins in isoelectric acidic buffers. Electrophoresis 20:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Olsen O-A (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol 52:233–267

    Article  CAS  PubMed  Google Scholar 

  • Olsen O-A (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 16:S214–S227

    Article  CAS  PubMed  Google Scholar 

  • Orrego M, Ponte I, Roque A, Buschati N, Mora X, Suau P (2007) Differential affinity of mammalian histone H1 somatic subtypes for DNA and chromatin. BMC Biol 5:22

    Article  PubMed  Google Scholar 

  • Parseghian MH, Newcomb RL, Hamkalo BA (2001) Distribution of somatic H1 subtypes is non-random on active vs inactive chromatin II: distribution in human adult fibroblasts. J Cell Biochem 83:643–659

    Article  CAS  PubMed  Google Scholar 

  • Prymakowska-Bosak M, Przewloka MR, Iwkiewicz J, Egierszdorff S, Kuras M, Chaubet N, Gigot C, Spiker S, Jerzmanowski A (1996) Histone H1 overexpressed to high level in tobacco affects certain developmental programs but has limited effect on basal cellular functions. Proc Natl Acad Sci USA 93:10250–10255

    Article  CAS  PubMed  Google Scholar 

  • Prymakowska-Bosak M, Przewloka MR, Slusarczyk J, Kuras M, Lichota J, Kilianczyk B, Jerzmanowski A (1999) Linker histones play a role in male meiosis and the development of pollen grains in tobacco. Plant Cell 11:2317–2329

    Article  CAS  PubMed  Google Scholar 

  • Przewloka MR, Wierzbicki AT, Slusarczyk J, Kuras M, Grasser KD, Stemmer C, Jerzmanowski A (2002) The “drought-inducible” histone H1 s of tobacco play no role in male sterility linked to alterations in H1 variants. Planta 215:371–379

    Article  CAS  PubMed  Google Scholar 

  • Ritt C, Grimm R, Fernández S, Alonso JC, Grasser KD (1998a) Basic and acidic regions flanking the HMG domain of maize HMGa modulate the interactions with DNA and the self-association of the protein. Biochemistry 37:2673–2681

    Article  CAS  PubMed  Google Scholar 

  • Ritt C, Grimm R, Fernández S, Alonso JC, Grasser KD (1998b) Four differently chromatin-associated maize HMG domain proteins modulate DNA structure and act as architectural elements in nucleoprotein complexes. Plant J 14:623–631

    Article  CAS  PubMed  Google Scholar 

  • Robinson PJJ, Rhodes D (2006) Structure of the ′30 nm′chromatin fibre: a key role of the linker histone. Curr Opin Struct Biol 16:336–343

    Article  CAS  PubMed  Google Scholar 

  • Sabelli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol 149:14–26

    Article  CAS  PubMed  Google Scholar 

  • Scippa GS, Di Michele M, Onelli E, Patrignani G, Chiatante D, Bray EA (2004) The histone-like protein H1-S and the response of tomato leaves to water deficit. J Exp Bot 55:99–109

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Spiker S (1976) Expression of parental histone genes in the intergeneric hybrid Triticale hexaploide. Nature 259:418–420

    Article  CAS  PubMed  Google Scholar 

  • Srebeva L, Iosifidu M, Chimshirova K, Zlatanova J (1989) Occurrence of histone H10-related fraction in differentiated maize roots. Biochim Biophys Acta 1008:346–350

    Google Scholar 

  • Th`ng JPH, Sung R, Ye M, Hendzel MJ (2005) H1 family histones in the nucleus. Control of binding and localization by the C-terminal domain. J Biol Chem 280:27809–27814

    Article  CAS  Google Scholar 

  • Thomas JO (1999) Histone H1: location and role. Curr Opin Cell Biol 11:312–317

    Article  CAS  PubMed  Google Scholar 

  • Villar-Garea A, Imhof A (2008) Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One 3:e1553

    Article  PubMed  Google Scholar 

  • Wierzbicki AT, Jerzmanowski A (2005) Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation. Genetics 169:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski JR, Zougman A, Krüger S, Mann M (2007) Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol Cell Proteomics 6:72–87

    CAS  PubMed  Google Scholar 

  • Woodcock CL, Skoultchi AI, Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14:17–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Danish Research Council to Klaus Grasser. Rainer Kalamajka was recipient of a fellowship from the German Academic Exchance Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus D. Grasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalamajka, R., Finnie, C. & Grasser, K.D. Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels. Planta 231, 1127–1135 (2010). https://doi.org/10.1007/s00425-010-1119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1119-8

Keywords