Skip to main content

Advertisement

Log in

Monoclonal antibodies to rhamnogalacturonan I backbone

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Monoclonal antibodies were raised against rhamnogalacturonan I backbone, a pectin domain, using Arabidopsis thaliana seed mucilage-derived rhamnogalacturonan I oligosaccharides—BSA conjugates. Two monoclonal antibodies, designated INRA-RU1 and INRA-RU2, selected for further characterization, were specific for the backbone of rhamnogalacturonan I, displaying no binding activity against the other pectin domains i.e. homogalacturonans, galactans or arabinans. A range of oligosaccharides was prepared by enzymatic digestion of rhamnogalacturonan I isolated from Arabidopsis thaliana seed mucilage and from sugar beet pectin, purified by low-pressure chromatography and characterized by high-performance anion-exchange chromatography and mass spectrometry. These rhamnogalacturonan I oligomers were used to characterize the binding site of the two monoclonal antibodies by competitive inhibition. Both INRA-RU1 and INRA-RU2 showed maximal binding to the [→2)-α-l-rhamnosep-(1→4)-α-d-galacturonic acid p-(1→]7 structural motif but differed in their minimum binding requirement. INRA-RU2 required at least two disaccharide (rhamnose–galacturonic acid) repeats for the antibody to bind, while INRA-RU1 required a minimum of six disaccharide repeats. Furthermore, the binding capacity of INRA-RU1 decreased steeply as the number of disaccharide repeats go beyond seven. Each of these antibodies reacted with hairy regions isolated from sugar beet pectin. Immunofluorescence microscopy indicated that both antibodies can be readily used to detect rhamnogalacturonan I epitopes in various cell wall samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

Dp:

Degree of polymerization

ESI-IT-MS:

Electrospray ion trap mass spectrometry

G:

galactose

HG:

Homogalacturonan

HG0:

Non-methylated HG

HG-93:

HG with a degree of methylesterification of 93

HG-B69:

Base-deesterified HG with a degree of methylesterification of 69

HG-B20:

Base-deesterified HG with a degree of methylesterification of 20

HG-P36:

Plant PME-deesterified HG with a degree of methylesterification of 36

HG-TBA:

Homogalacturonan in tetrabutyl ammonium hydroxide form

HPAEC:

High-performance anion exchange chromatography

HR:

Hairy regions

HR-H:

Acid-treated hairy regions

HRP:

Horseradish peroxidase

Ig:

Immunoglobulin

LRW:

London Resin White

mAb:

Monoclonal antibody

MS:

Mass spectrometry

PBS:

Phosphate buffer saline

R:

Rhamnose

RG-I:

Rhamnogalacturonan I

RG-II:

Rhamnogalacturonan II

RU-pool-BSA:

Selected rhamnogalacturonan oligosaccharides pool conjugated to bovine serum albumin

RU:

[→2)-α-l-Rhap-(1→4)-α-d-GalpA-(1→]

RU-pool-OVA:

Selected rhamnogalacturonan oligosaccharides pool conjugated to ovalbumin

TBA:

Tetrabutyl ammonium hydroxide

U:

Galacturonic acid

References

  • Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetate for monosaccharides analysis. Carbohydr Res 113:291–299

    Article  CAS  Google Scholar 

  • Bonnin E, Brunel M, Gouy Y, Lesage-Meessen L, Asther M, Thibault J-F (2001) Aspergillus niger I-1472 and Pycnoporus cinnabarinus MUCL39533, selected for the biotransformation of ferulic acid to vanillin, are also able to produce cell wall polysaccharide-degrading enzymes and feruloyl esterases. Enzym Microb Technol 28:70–80

    Article  Google Scholar 

  • Bradford MMA (1976) A rapid sensitive method for the quantification of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–255

    Article  CAS  PubMed  Google Scholar 

  • Bush MS, McCann MC (1999) Pectic epitopes are differentially distributed in the cell walls of potato (Solanum tuberosum) tubers. Physiol Plant 107:201–213

    Article  CAS  Google Scholar 

  • Coenen GJ (2007) Structural characterization of native pectins. Dissertation, University of Wageningen, The Netherlands

  • Davis EA, Derouet C, Hervé du Penhoat C, Morvan C (1990) Isolation and NMR study of pectins from flax (Linum usitatissimum L.). Carbohydr Res 197:205–215

    Article  CAS  Google Scholar 

  • Ermel FF, Follet-Gueye ML, Ibert C, Vian B, Morvan C, Catesson AM, Goldberg R (2000) Differential localization of arabinan and galactan side chains of rhamnogalacturonan I in cambial derivatives. Planta 210:732–740

    Article  CAS  PubMed  Google Scholar 

  • Galfre G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73:3–46

    Article  CAS  PubMed  Google Scholar 

  • Goubet F, Bourlard T, Girault R, Alexandre C, Vandeveld M-C, Morvan C (1995) Structural features of galactans from flax fibres. Carbohydr Polym 27:211–227

    Article  Google Scholar 

  • Guglielmino N, Liberman M, Jauneau A, Vian B, Catesson AM, Goldberg R (1997) Pectin immunolocalization and calcium visualization in differentiating derivatives from poplar cambium. Protoplasma 199:152–161

    Article  Google Scholar 

  • Guillemin F, Guillon F, Bonnin E, Devaux M-F, Chevalier T, Knox JP, Liners F, Thibault J-F (2005) Distribution of pectic epitopes in cell walls of the sugar beet root. Planta 222:355–371

    Article  CAS  PubMed  Google Scholar 

  • Guillon F, Thibault JF (1989) Methylation analysis and mild acid hydrolysis of the ‘hairy’ fragments of sugar beet pectins. Carbohydr Res 190:85–96

    Article  CAS  Google Scholar 

  • Guillon F, Philippe S, Bouchet B, Devaux MF, Frasse P, Jones B, Bouzayen M, Lahaye M (2008) Down-regulation of an auxin response factor in the tomato induces modification of fine pectin structure and tissue architecture. J Exp Bot 59:273–288

    Article  CAS  PubMed  Google Scholar 

  • His I, Andème-Onzighi C, Morvan C, Driouich A (2001) Microscopic studies on mature flax fibers embedded in LR white: immunogold localization of cell wall matrix polysaccharides. J Histochem Cytochem 49:1525–1535

    CAS  PubMed  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-d-galactan. Plant Physiol 113:1405–1412

    CAS  PubMed  Google Scholar 

  • Knox JP (2008) Revealing the structural and functional diversity pf plant cell walls. Curr Opin Plant Biol 11:308–313

    Article  CAS  PubMed  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  Google Scholar 

  • Liners F, Letesson JJ, Didembourg C, Van Cutsem P (1989) Monoclonal antibodies against pectin. Recognition of a conformation induced by calcium. Plant Physiol 94:1419–1424

    Article  Google Scholar 

  • Liners F, Thibault J-F, Van Cutsem P (1992) Influence of the degree of polymerization of oligogalacturonates and of esterification pattern of pectin on their recognition by monoclonal antibodies. Plant Physiol 99:1099–1104

    Article  CAS  PubMed  Google Scholar 

  • Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556

    Article  CAS  Google Scholar 

  • Macquet A, Ralet M-C, Kronenberger J, Marion-Poll A, North HM (2007) In situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. Plant Cell Physiol 48:984–999

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Steele-King CG, Jordan E, Knox JP (2003) Cell wall pectic(1->4)β-d-galactan marks the acceleration of cell elongation in the Arabidopsis seedling root meristem. Plant J 33:447–454

    Article  CAS  PubMed  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Oosterveld A, Beldman G, Voragen AGJ (2002) Enzymatic modification of pectic polysaccharides obtained from sugar beet pulp. Carbohydr Polym 48:73–81

    Article  CAS  Google Scholar 

  • Peňa MJ, Carpita NC (2004) Loss of highly branched arabinans and debranching of rhamnogalacturona I accompany loss of firm texture and cell separation during prolonged storage of apple. Plant Physiol 135:1305–1313

    Article  PubMed  Google Scholar 

  • Ralet M-C, Thibault J-F (2009) Hydrodynamic properties of isolated pectin domains: a way to figure out pectin macromolecular structure? In: Schol H, Visser J, Voragen AGJ (eds) Pectins and pectinases. Wageningen Academic Publishers, Wageningen, pp 35–48

    Google Scholar 

  • Ralet M-C, Dronnet V, Buchholt HC, Thibault J-F (2001) Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties. Carbohydr Res 336:117–125

    Article  CAS  PubMed  Google Scholar 

  • Renard CMGC, Jarvis MC (1999) Acetylation and methylation of homogalacturonans 1: optimisation of the reaction and characterisation of the products. Carbohydr Polym 39:201–207

    Article  CAS  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Rondeau-Mouro C, Crépeau M-J, Lahaye M (2003) Application of CP-MAS and liquid-like solid-state NMR experiments for the study of the ripening-associated cell wall changes in tomato. Intern J Biol Macromol 31:235–244

    Article  CAS  Google Scholar 

  • Roy R, Katzenellenbogen E, Jennings HJ (1984) Improved procedures for the conjugation of oligosaccharides to protein by reductive amination. Can J Biochem Cell Biol 62:270–275

    Article  CAS  PubMed  Google Scholar 

  • Schols HA, Voragen AGJ (1996) Complex pectins: structure elucidation using enzymes. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier Science BV, Amsterdam, pp 3–19

    Chapter  Google Scholar 

  • Schols HA, Voragen AGJ (2002) The chemical structure of pectins. In: Seymour GB, Knox JP (eds) Pectins and their manipulation. Blackwell Publishing, Oxford, pp 1–29

    Google Scholar 

  • Seymour GB, Colquhoun IJ, DuPont MS, Parsley KR, Selvendran RR (1990) Composition and structural features of cell wall polysaccharides from tomato fruits. Phytochemistry 29:725–731

    Article  CAS  Google Scholar 

  • Thibault J-F (1979) Automatisation du dosage des substances pectiques par la méthode au métahydroxydiphényle. Lebensm Wiss u Technol 71:215–223

    Google Scholar 

  • Thibault J-F, Renard CMGC, Axelos MAV, Roger P, Crépeau MJ (1993) Studies of the length of homogalacturonic regions in pectins by acid hydrolysis. Carbohydr Res 238:271–286

    Article  CAS  Google Scholar 

  • Tollier MT, Robin JP (1979) Adaptation de la méthode à l’orcinol sulfurique au dosage automatique des glucides neutres totaux: conditions d’application aux extraits d’origine végétale. Annales de Technologie Agricole 28:1–15

    CAS  Google Scholar 

  • VandenBosch KA, Desmond JB, Knox JP, Perotto S, Butcher GW, Brewin N (1989) Common components of the infection thread matrix and the intercellular space indentified by immunocytochemical analysis of pea nodules and uninfected root. EMBO J 8:335–342

    CAS  PubMed  Google Scholar 

  • Verhertbruggen Y, Marcus SE, Haeger A, Verhoel R, Schols HA, McCleary B, McKee L, Gilbert HJ, Knox JP (2009) Developmental complexity of arabinan polysaccharides and their processing in plant cell walls. Plant J 59:413–425

    Article  CAS  PubMed  Google Scholar 

  • Voragen AGJ, Coenen GJ, Verhoef RP, Schols HA (2009) Pectin, a versatile polysaccharide present in plant cell walls. Struct Chem 20:263–275

    Article  CAS  Google Scholar 

  • Willats WGT, Knox JP (2003) Molecules in context: probes for cell wall analysis. In: Rose JKC (ed) The plant cell wall. Blackwell Publishing/CRC, New York, pp 92–110

    Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of monoclonal antibody specific to (1–5)-α-L-arabinan. Carbohydr Res 308:149–152

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Gilmartin PM, Mikkelsen JD, Knox JP (1999a) Cell wall antibodies without immunization: Generation and use of de-esterified homogalacturonan block-specific antibodies from a native phage display library. Plant J 18:57–65

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Steele-King CG, Marcus SE, Knox JP (1999b) Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J 20:619–928

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001a) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Orfila C, Limberg G, Buchholt HC, van Alebeek G-JWM, Voragen AGJ, Marcus SE, Christensen TMIE, Mikkelsen JD, Murray BS, Knox JP (2001b) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls—implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 76:19404–19413

    Article  Google Scholar 

  • Willats WGT, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Plant Sci 17:97–104

    CAS  Google Scholar 

  • Williams MAK, Cucheval A, Ström A, Ralet M-C (2009) Electrophoretic behavior of copolymeric galacturonans including comments on the information content of the intermolecular charge distribution. Biomacromolecules 10:1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Young RE, McFarlane HE, Hahn MG, Western TL, Haughn GW, Samuels AL (2008) Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell 20:1623–1638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marie-Jeanne Crépeau for assistance in the isolation and characterization of oligosaccharides, hairy regions and homogalacturonans; Valerie Echasserieau for performing the cell cultures and the isolation of antibodies; Lauren Helary for carrying out the immunochemical characterization, the preparation of plant material, the characterization of antibody binding to sections and the acquisition of micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Guillon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralet, MC., Tranquet, O., Poulain, D. et al. Monoclonal antibodies to rhamnogalacturonan I backbone. Planta 231, 1373–1383 (2010). https://doi.org/10.1007/s00425-010-1116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1116-y

Keywords

Navigation