Skip to main content

Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions

Abstract

The effect of high salt concentration (100 mM NaCl) on the organization of photosystem I-light harvesting complex I supercomplexes (PSI-LHCI) of Chlamydomonas reinhardtii was studied. The electron transfer activity was reduced by 39% in isolated PSI-LHCI supercomplexes. The visible circular dichroism (CD) spectra associated with strongly coupled chlorophyll (Chl) dimers were reduced in intensity, indicating that pigment–pigment interactions were disrupted. This data is consistent with results from fluorescence streak camera spectroscopy, which suggest that red-shifted pigments in the PSI-LHCI antenna had been lost. Denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI reaction center proteins PsaD, PsaE and PsaF were reduced due to salt stress. PsaE is almost completely absent under high salt conditions. It is known that the membrane-extrinsic subunits PsaD and E form the ferredoxin-docking site. Our results indicate that the PSI-LHCI supercomplex is damaged by reactive oxygen species at high salt concentration, with particular impact on the ferredoxin-docking site and the PSI-LHCI interface.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CD:

Circular dichroism

Chl:

Chlorophyll

DDM:

n-Dodecyl-β-maltoside

LHC:

Light harvesting complex

MALDI-TOF:

Matrix assisted laser desorption ionization time-of-flight mass spectrometry

PS:

Photosystem

SOD:

Superoxide dismutase

References

  • Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Suzuki I, Tasaka Y, Murata N (1999) Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. Proc Natl Acad Sci USA 96:5862–5867

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) NaCl-induced inactivation of photosystems I and II in Synechococcus: osmotic effects and ionic effects. Plant Physiol 123:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265

    Article  CAS  PubMed  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 44:58–63

    Article  Google Scholar 

  • Bassi R, Simpson D (1987) Chlorophyll–protein complexes of barley photosystem I. Eur J Biochem 163:221–230

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635

    Article  CAS  PubMed  Google Scholar 

  • Brini FB, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    Article  CAS  PubMed  Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzymes activities in bean (Phaseolus vulgaries L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chitnis PR, Xu Q, Chitnis VP, Nechushtai R (1995) Function and organization of photosystem I polypeptides. Photosynth Res 44:23–40

    Article  CAS  Google Scholar 

  • Chitnis VP, Jungs YS, Albee L, Golbeck JH, Chitnis PR (1996) Mutational analysis of photosystem I polypeptides. Role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. J Biol Chem 271:11772–11780

    Article  CAS  PubMed  Google Scholar 

  • Cho HM, Mancino LJ, Blankenship RE (1984) Light saturation curves and quantum yields in reaction centers from photosynthetic bacteria. Biophys J 45:455–4613

    Article  CAS  PubMed  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochim Biophys Acta 1767:272–280

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Schreiber U, Asada K (1995) Suppression of quantum yield of photosystem II by hyperosmotic stress in Chlamydomonas reinhardtii. Plant Cell Physiol 36:1253–1258

    CAS  Google Scholar 

  • Everard JD, Gucci R, Kann SC, Flore JA, Loescher WH (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. Plant Physiol 106:281–292

    CAS  PubMed  Google Scholar 

  • Fischer N, Setif P, Rochaix JD (1997) Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: preferential reduction of FB at low temperature is not accompanied by altered electron flow from photosystem I to ferredoxin. Biochemistry 36:93–102

    Article  CAS  PubMed  Google Scholar 

  • Gibasiewicz K, Ramesh VM, Melkozernov AN, Lin S, Woodbury NW, Blankenship RE, Webber AN (2001) Excitation dynamics in the core antenna of PS I from Chlamydomonas reinhardtii CC 2696 at room temperature. J Phys Chem B 105:11498–11506

    Article  CAS  Google Scholar 

  • Gibasiewicz K, Ramesh VM, Lin S, Woodbury NW, Webber AN (2002) Excitation dynamics in eukaryotic PS I from Chlamydomonas reinhardtii CC 2696 at 10 K. Direct detection of the reaction center exciton states. J Phys Chem B 106:6322–6330

    Article  CAS  Google Scholar 

  • Gibasiewicz K, Szrajner A, Ihalainen JA, Germano M, Dekker JP, van Grondelle R (2005) Characterization of low-energy chlorophylls in the PSI-LHCI supercomplex from Chlamydomonas reinhardtii. A site-selective fluorescence study. J Phys Chem B 109:21180–21186

    Article  CAS  PubMed  Google Scholar 

  • Gilmour DJ, Hipkins MF, Webber AN, Baker NR, Boney AD (1985) The effect of ionic stress on photosynthesis in Dunaliella tertiolecta. Chlorophyll fluorescence kinetics and spectral characteristics. Planta 163:250–256

    Article  CAS  Google Scholar 

  • Gobets B, van Grondelle R (2001) Energy transfer and trapping in photosystem I. Biochim Biophys Acta 1507:80–99

    Article  CAS  PubMed  Google Scholar 

  • Golbeck JH (1999) A comparative analysis of the spin state distribution of in vitro and in vivo mutants of PsaC. A biochemical argument for the sequence of electron transfer in photosystem I as FX → FA → FB → ferredoxin/flavodoxin. Photosynth Res 61:107–144

    Article  CAS  Google Scholar 

  • Gong H, Tang Y, Wang J, Wen X, Zhang L, Lu C (2008) Characterization of photosystem II in salt-stressed cyanobacterial Spirulina platensis cells. Biochim Biophys Acta 1777:488–495

    Article  CAS  PubMed  Google Scholar 

  • Ihalainen JA, Klimmek F, Ganeteg U, van Stokkum IH, van Grondelle R, Jansson S, Dekker JP (2005) Excitation energy trapping in photosystem I complexes depleted in Lhca1 and Lhca4. FEBS Lett 579:4787–4791

    Article  CAS  PubMed  Google Scholar 

  • Jeanjean R, Latifi A, Matthijs HCP, Havaux M (2008) The PsaE subunit of photosystem I prevents light-induced formation of reduced oxygen species in the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1777:308–316

    Article  CAS  PubMed  Google Scholar 

  • Jensen PE, Bassi R, Boekema EJ, Dekker JP, Jansson S, Leister D, Robinson C, Scheller HV (2007) Structure, function and regulation of plant photosystem I. Biochim Biophys Acta 1767:335–352

    Article  CAS  PubMed  Google Scholar 

  • Jolley CC, Wells SA, Hespenheide BM, Thorpe MF, Fromme P (2006) Docking of photosystem I subunit C using a constrained geometric simulation. J Am Chem Soc 128:8803–8812

    Article  CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–917

    Article  CAS  PubMed  Google Scholar 

  • Kargul J, Nield J, Barber J (2003) Three-dimensional reconstruction of a light-harvesting complex I–photosystem I (LHCI-PSI) supercomplex from the green alga Chlamydomonas reinhardtii. Insights into light harvesting for PSI. J Biol Chem 278:16135–16141

    Article  CAS  PubMed  Google Scholar 

  • Lelong C, Boekema EJ, Kruip J, Bottin H, Rögner M, Sétif P (1996) Characterization of a redox active cross-linked complex between cyanobacterial photosystem I and soluble ferredoxine. EMBO J 15:2160–2168

    CAS  PubMed  Google Scholar 

  • Li N, Zhao JD, Warren PV, Warden JT, Bryant DA, Golbeck JH (1991) PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry 30:7863–7872

    Article  CAS  PubMed  Google Scholar 

  • Lidell PA, Gervaldo M, Bridgewater JW, Keirstead AE, Lin S, Moore TA, Moore AL, Gust D (2008) Porphyrin-based hole conducting electropolymer. Chem Mater 20:135–142

    Article  Google Scholar 

  • Lu C, Vonshak A (1999) Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. New Phytol 141:231–239

    Article  CAS  Google Scholar 

  • Lu C, Vonshak A (2002) Effects of salinity on photosystem II function in cyanobacterial Spirulina platensis cells. Physiol Plant 114:405–413

    Article  CAS  PubMed  Google Scholar 

  • Lüneberg J, Fromme P, Jekowa P, Schlodde E (1994) Spectroscopic characterization of PSI core complexes from thermophilic Synechococcus sp: Identical reoxidation kinetics of A−1 before and after removal of the iron-sulfur-clusters FA and FB. FEBS Lett 338:197–202

    Article  PubMed  Google Scholar 

  • Misra AN, Sahu SM, Mishra M, Ramaswamy NK, Desai TS (1999) Sodium chloride salt stress induced changes in thylakoid pigment-protein complexes, photosystem II activity and thermoluminescence glow peaks. Z Naturforsch 54c:640–644

    Google Scholar 

  • Miyao M, Murata N (1983) Partial disintegration and reconstitution of the photosynthetic oxygen–evolution system: binding of 24 kDa and 18 kDa polypeptides. Biochim Biophys Acta 725:87–93

    Article  CAS  Google Scholar 

  • Murata N, Miyao M (1985) Extrinsic membrane proteins in the photosynthetic oxygen-evolving complex. Trends Biochem Sci 10:122–124

    Article  CAS  Google Scholar 

  • Murata N, Mohanty PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen evolving complex. FEBS Lett 296:187–189

    Article  CAS  PubMed  Google Scholar 

  • Oh-Oka H, Takahashi Y, Kuriyama K, Saeki K, Matsubara H (1988) The protein responsible for center A/B in spinach photosystem I: isolation with iron–sulfur cluster(s) and complete sequence analysis. J Biochem 103:962–968

    CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Mittra B (2003) Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica 41:191–200

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Satoh K, Smith CM, Fork DC (1983) Effects of salinity on primary processes of photosynthesis in the red alga Porphyra perforata. Plant Physiol 73:643–647

    Article  CAS  PubMed  Google Scholar 

  • Sétif P, Fischer N, Lagoutte B, Bottin H, Rochaix J-D (2002) The ferredoxin docking site of photosystem I. Biochim Biophys Acta 1555:204–209

    Article  PubMed  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaries): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89

    Article  CAS  Google Scholar 

  • Subramanyam R, Jolley C, Brune DC, Fromme P, Webber AN (2006) Characterization of a novel photosystem I–LHCI supercomplex isolated from Chlamydomonas reinhardtii under anaerobic (state II) conditions. FEBS Lett 580:233–238

    Article  CAS  PubMed  Google Scholar 

  • Sudhir P, Pogoryelov D, Kovács L, Garab G, Murthy SDS (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38:481–485

    CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Tiwari BS, Bose A, Ghosh B (1997) Photosynthesis in rice under a salt stress. Photosynthetica 34:303–306

    Article  CAS  Google Scholar 

  • Towbin H, Stahelin T, Gordon J (1979) Electrophoresis transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some application. Proc Natl Acad Sci USA 76:43450–43454

    Article  Google Scholar 

  • Tuloup M, Hernandez C, Coro I, Hoogland C, Binz P-A, Appel RD (2003) Aldente and biograph: an improved peptide mass fingerprinting protein identification environment. In: Fontis Media (ed) Swiss Proteomics congress: understanding biological systems through proteomics. Basel, Switzerland, pp 174–176

  • Vassiliev IR, Antonkine ML, Golbeck JH (2001) Iron-sulfur clusters in type I reaction centers. Biochim Biophys Acta 1507:139–160

    Article  CAS  PubMed  Google Scholar 

  • Verma K, Mohanty P (2000a) Changes of the photosynthetic apparatus in Spirulina cyanobacterium by sodium stress. Z Naturforsch 55c:16–22

    Google Scholar 

  • Verma K, Mohanty P (2000b) Alterations in the structure of phycobilisomes of the cyanobacterium, Spirulina platensis in response to enhanced Na+ level. World J Microbiol Biotechnol 16:795–798

    Article  CAS  Google Scholar 

  • Yu J, Smart LB, Jung YS, Golbeck J, McIntosh L (1995) Absence of PsaC subunit allows assembly of photosystem I core but prevents the binding of PsaD and PsaE in Synechocystis sp. PCC 6803. Plant Mol Biol 29:331–342

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Snyder WB, Muhlenhoff U, Rhiel E, Warren PV, Golbeck JH, Bryant DA (1993) Cloning and characterization of the psaE gene of the cyanobacterium Synechococcus sp. PCC 7002: characterization of a psaE mutant and overproduction of the protein in Escherichia coli. Mol Microbiol 9:183–194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Biotechnology (BT/PR11277/GBD/27/152/2008), Department of Science and technology, India to RS and the National Science Foundation under Grant No. MCB-0417142. We thank Prof. Kevin Redding, Department of Chemistry and Biochemistry, Arizona State University, USA for his kind gift of the antibodies (PsaE and F). We thank Dr. Su Lin for assistance with the fluorescence kinetics measurements at the Center for Bio-optical Nanotechnology at ASU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajagopal Subramanyam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Subramanyam, R., Jolley, C., Thangaraj, B. et al. Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions. Planta 231, 913–922 (2010). https://doi.org/10.1007/s00425-009-1097-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1097-x

Keywords