Skip to main content

Advertisement

Log in

A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We are developing Lavandula angustifolia (lavender) as a model system for investigating molecular regulation of essential oil (a mixture of mono- and sesquiterpenes) production in plants. As an initial step toward building the necessary ‘genomics toolbox’ for this species, we constructed two cDNA libraries from lavender leaves and flowers, and obtained sequence information for 14,213 high-quality expressed sequence tags (ESTs). Based on homology to sequences present in GenBank, our EST collection contains orthologs for genes involved in the 1-deoxy-d-xylulose-5-phosphate (DXP) and the mevalonic acid (MVA) pathways of terpenoid biosynthesis, and for known terpene synthases and prenyl transferases. To gain insight into the regulation of terpene metabolism in lavender flowers, we evaluated the transcriptional activity of the genes encoding for 1-deoxy-d-xylulose-5-phosphate synthase (DXS) and HMG-CoA reductase (HMGR), which represent regulatory steps of the DXP and MVA pathways, respectively, in glandular trichomes (oil glands) by real-time PCR. While HMGR transcripts were barely detectable, DXS was heavily expressed in this tissue, indicating that essential oil constituents are predominantly produced through the DXP pathway in lavender glandular trichomes. As anticipated, the linalool synthase (LinS)—the gene responsible for the production of linalool, a major constituent of lavender essential oil—was also strongly expressed in glands. Surprisingly, the most abundant transcript in floral glandular trichomes corresponded to a sesquiterpene synthase (cadinene synthase, CadS), although sesquiterpenes are minor constituents of lavender essential oils. This result, coupled to the weak activity of the MVA pathway (the main route for sesquiterpene production) in trichomes, indicates that precursor supply may represent a bottleneck in the biosynthesis of sesquiterpenes in lavender flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

DXS :

1-Deoxy-d-xylulose-5-phosphate synthase

HMGR :

3-Hydroxy-3-methylglutartl-CoA reductase

LinS :

Linalool synthase

FarS :

[E]-β-Farnesene synthase

DXP :

1-Deoxy-d-xylulose-5-phosphate

MVA :

Mevalonic acid

IPP :

Isopentenyl diphosphate

DMAPP :

Dimethylallyl diphosphate

HMGS :

3-Hydroxy-3-methylglutartl-CoA synthase

GO :

Gene ontology

qRT-PCR :

Quantitative real-time polymerase chain reaction

PCR :

Polymerase chain reaction

Contig :

Contiguous sequence

References

  • Bertea CM, Schalk M, Karp F, Maffei M, Croteau R (2001) Demonstration that menthofuran synthase of mint (Mentha) is a cytochrome P450 monooxygenase: cloning, functional expression, and characterization of the responsible gene. Arch Biochem Biophys 390:279–286

    Article  CAS  PubMed  Google Scholar 

  • Bick JA, Lange BM (2003) Metabolic crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys 415:146–154

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133

    Article  CAS  PubMed  Google Scholar 

  • Bohlmann J, Martin D, Oldham NJ, Gershenzon J (2000) Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-beta-ocimene synthase. Arch Biochem Biophys 375:261–269

    Article  CAS  PubMed  Google Scholar 

  • Castle J, Lis-Balchin M (2002) History of usage of Lavandula species. In: Lis-Balchin M (ed) Lavender: the genus Lavandula. Taylor & Francis, London, pp 35–50

    Google Scholar 

  • Cavanagh HM, Wilkinson JM (2002) Biological activities of lavender essential oil. Phytother Res 16:301–308

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Lou Y, Mao Y, Lu S, Wang L, Chen X (2007) Plant terpenoids: biosynthesis and ecological functions. J Int Plant Biol 49:179–186

    Article  CAS  Google Scholar 

  • Chou H, Holmes MH (2001) DNA sequence quality trimming and vector removal. Bioinfomatics 17:1093–1104

    Article  CAS  Google Scholar 

  • Crock J, Wildung M, Croteau R (1997) Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha × piperita. L.) that produces the aphid alarm pheromone (E)-beta-farnesene. Proc Natl Acad Sci USA 94:12833–12838

    Article  CAS  PubMed  Google Scholar 

  • Croteau R, Karp F, Wagschal KC, Satterwhite DM, Hyatt DC, Skotland CB (1991) Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. Plant Physiol 96:744–752

    Article  CAS  PubMed  Google Scholar 

  • Crowell AL, Williams DC, Davis EM, Wildung MR, Croteau R (2002) Molecular cloning and characterization of a new linalool synthase. Arch Biochem Biophys 405:112–121

    Article  CAS  PubMed  Google Scholar 

  • Cseke L, Dudareva N, Pichersky E (1998) Structure and evolution of linalool synthase. Mol Biol Evol 15:1491–1498

    CAS  PubMed  Google Scholar 

  • Cusidó RM, Palazón J, Bonfill M, Expósito O, Moyano E, Piñol MT (2007) Source of isopentenyl diphosphate for taxol and baccatin III biosynthesis in cell cultures of Taxus baccata. Biochem Eng J 33:159–167

    Article  Google Scholar 

  • Darshan S, Doreswamy R (2004) Patented antiinflammatory plant drug development from traditional medicine. Phytother Res 18:343–357

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Faldt J, Miller B, Bohlmann J (2003) (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938

    Article  CAS  PubMed  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  • Falk L, Biswas K, Boeckelmann A, Lane A, Mahmoud SS (2009) An efficient method for the micropropagation of lavenders: regeneration of a unique mutant. J Essent Oil Res 21:225–228

    CAS  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J, McConkey ME, Croteau RB (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122:205–214

    Article  CAS  PubMed  Google Scholar 

  • Grote R, Niinemets U (2008) Modeling volatile isoprenoid emissions—a story with split ends. Plant Biol (Stuttg) 10:8–28

    CAS  Google Scholar 

  • Hampel D, Mosandl A, Wüst M (2005) Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): metabolic crosstalk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. J Agric Food Chem 66:305–311

    CAS  Google Scholar 

  • Hampel D, Mosandl A, Wüst M (2006) Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage: 2H labeling studies. J Agric Food Chem 54:1473–1478

    Article  CAS  PubMed  Google Scholar 

  • Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ (2003) Crosstalk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676

    Article  CAS  PubMed  Google Scholar 

  • Huber DPW, Ralph S, Bohlmann J (2004) Genomic hardwiring and phenotypic plasticity of terpenoid-based defense in conifers. J Chem Ecol 30:2399–2418

    Article  CAS  PubMed  Google Scholar 

  • Hudgins JW, Ralph SG, Franceschi VR, Bohlmann J (2006) Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1-carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224:865–877

    Article  CAS  PubMed  Google Scholar 

  • ISO 8902 (1999) Oil of lavandin Grosso [Lavandula angustifolia Miller × Lavandula latifolia (Lf) Medikus], French type

  • ISO 3515 (2002) Oil of lavender (Lavandula angustifolia Mill.)

  • Landmann C, Fink B, Festner M, Dregus M, Engel KH, Schwab W (2007) Cloning and functional characterization of three terpene synthases from lavender (Lavandula angustifolia). Arch Biochem Biophys 465:417–429

    Article  CAS  PubMed  Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci USA 97:2934–2939

    Article  CAS  PubMed  Google Scholar 

  • Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange M (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871

    Article  CAS  PubMed  Google Scholar 

  • Lawrence BM (2004) Progress in essential oils. Perfume & Flavorist 29:70–91

    Google Scholar 

  • Liu Y, Wang H, Ye HC, Li GF (2005) Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J Int Plant Biol 47:769–782

    Article  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose 5-phosphate synthase. Plant J 22:503–513

    Article  CAS  PubMed  Google Scholar 

  • Lund ST, Bohlmann J (2006) The molecular basis for wine grape quality—a volatile subject. Science 311:804–805

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud SS, Croteau RB (2003) Menthofuran regulates essential oil biosynthesis in peppermint by controlling a downstream monoterpene reductase. Proc Natl Acad Sci USA 100:14481–14486

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud SS, Williams M, Croteau R (2004) Cosuppression of limonene-3-hydroxylase in peppermint promotes accumulation of limonene in the essential oil. Phytochemistry 65:547–554

    Article  CAS  PubMed  Google Scholar 

  • McCaskill D, Gershenzon J, Croteau R (1992) Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta 187:445–454

    Article  CAS  Google Scholar 

  • Munoz-Bertomeu J, Arrillaga I, Ros R, Segura J (2006) Up-regulation of 1-deoxy-d-xylulose-5-phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol 142:890–900

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Bertomeu J, Sales E, Ros R, Arrillaga I, Segura J (2007) Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotechnol J 5:746–758

    Article  CAS  PubMed  Google Scholar 

  • Nagegowda DA, Bach TJ, Chye ML (2004) Brassica juncea 3-hydroxy-3-methylglutaryl (HMG)-CoA synthase 1: expression and characterization of recombinant wild-type and mutant enzymes. Biochem J 383:517–527

    Article  CAS  PubMed  Google Scholar 

  • Nagel J, Culley LK, Lu Y, Liu E, Matthews PD, Stevens JF, Page JE (2008) EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20:186–200

    Article  CAS  PubMed  Google Scholar 

  • Negre F, Kish CM, Boatright J, Underwood B, Shibuya K, Wagner C, Clark DG, Dudareva N (2003) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 15:2992–3006

    Article  CAS  PubMed  Google Scholar 

  • Phrap (2008) http://www.phrap.org/

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106:1533–1540

    CAS  PubMed  Google Scholar 

  • Raguso RA, Pichersky E (1999) New perspectives in pollination biology: floral fragrances. A day in the life of a linalool molecule: chemical communication in a plant-pollinator system. Part 1: linalool biosynthesis in flowering plants. Plant Spec Biol 14:95–120

    Article  Google Scholar 

  • Rodriguez-Concepcion M, Ahumada I, Diez-Juez E, Sauret-Gueto S, Lois LM, Gallego F, Carretero-Paulet L, Campos N, Boronat A (2001) 1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoid biosynthesis during tomato fruit ripening. Plant J 27:213–222

    Article  CAS  PubMed  Google Scholar 

  • Schuhr CA, Radykewicz T, Sagner S, Latzel C, Zenk MH, Arigoni D, Bacher A, Rohdich F, Eisenreich W (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16

    Article  CAS  Google Scholar 

  • Steliopoulos P, Wüst M, Adam KP, Mosandl A (2002) Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis: 13C and 2H labeling studies. Phtyochem 60:13–20

    Article  CAS  Google Scholar 

  • Suvachittanont W, Wititsuwannakul R (1995) 3-Hydroxy-3-methylglutaryl-coenzyme, a synthase in Hevea brasiliensis. Phtyochem 40:757–761

    Article  CAS  Google Scholar 

  • TAIR (2008) http://www.arabidopsis.org

  • Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • The Computational Biology and Functional Genomic Laboratory (2008) http://compbio.dfci.harvard.edu/tgi/software

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    CAS  PubMed  Google Scholar 

  • Turner GW, Gershenzon J, Croteau RB (2000) Distribution of peltate glandular trichomes on developing leaves of peppermint. Plant Physiol 124:655–664

    Article  CAS  PubMed  Google Scholar 

  • Upson T, Andrews S (2004) The Genus Lavandula. Timber Press, Portland Oregon

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Natural Sciences and Engineering Research Council of Canada, Investment Agriculture Foundation of British Columbia, Canada Foundation for Innovation, British Columbia Knowledge Development Fund, and UBC Okanagan. We would like to thank Michael Weis (Pacific Agri-Food Research Centre, Summerland, Canada) for his assistance with electron microscopy. We also thank NAPGEN (Plant Biotechnology Institute; Saskatoon, Canada) for supporting the research. In particular, we are grateful to Rong Li and Dustin Cram for construction of the cDNA libraries and related bioinformatics analyses. Finally, we are grateful to Dr. Mark Rheault of UBC Okanagan for his assistance with real-time PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil S. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, A., Boecklemann, A., Woronuk, G.N. et al. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia . Planta 231, 835–845 (2010). https://doi.org/10.1007/s00425-009-1090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1090-4

Keywords

Navigation