Skip to main content

Changes in the accumulation of α- and β-tubulin during bud development in Vitis vinifera L.

Abstract

Microtubules play important roles during growth and morphogenesis of plant cells. Multiple isoforms of α- and β-tubulin accumulate in higher plant cells and originate either by transcription of different genes or by post-translational modifications. The use of different tubulin isoforms involves the binding of microtubules to different associated proteins and therefore generates microtubules with different organizations and functions. Tubulin isoforms are differentially expressed in vegetative and reproductive structures according to the developmental program of plants. In grapevine (Vitis vinifera L.), vegetative and reproductive structures appear on the same stem, making this plant species an excellent model to study the accumulation of tubulin isoforms. Proteins were extracted from grapevine samples (buds, leaves, flowers and tendrils) using an optimized extraction protocol, separated by two-dimensional electrophoresis and analyzed by immunoblot with anti-tubulin antibodies. We identified eight α-tubulin and seven β-tubulin isoforms with pI around 4.8–5 that group into separate clusters. More acidic α-tubulin isoforms were detected in buds, while more basic α-isoforms were prevalently found in tendrils and flowers. Similarly, more acidic β-tubulin isoforms were used in the bud stage while a basic β-tubulin isoform was essentially used in leaves and two central β-tubulin isoforms were characteristically used in tendrils and flowers. Acetylated α-tubulin was not detected in any sample while tyrosinated α-tubulin was essentially found in large latent buds and in bursting buds in association with a distinct subset of tubulin isoforms. The implication of these data on the use of different tubulin isoforms during grapevine development is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. This antibody is different from the aN-18 listed in the α-tubulin section. The two antibodies have the same name but different code numbers and cross-react with different proteins.

Abbreviations

DTT:

Dithiothreitol

References

  • Astrom H (1992) Acetylated alpha-tubulin in the pollen tube microtubules. Cell Biol Int Rep 16:871–881

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Kost B, Chua NH (2001) Reduced expression of alpha-tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J 28:145–157

    Article  CAS  PubMed  Google Scholar 

  • Blume Y, Yemets A, Sulimenko V, Sulimenko T, Chan J, Lloyd C, Dráber P (2008) Tyrosine phosphorylation of plant tubulin. Planta 229:143–150

    Article  CAS  PubMed  Google Scholar 

  • Boss PK, Buckeridge EJ, Poole A, Thomas MR (2003) New insights into grapevine flowering. Funct Plant Biol 30:593–606

    Article  CAS  Google Scholar 

  • Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ (2004) Floral meristem identity genes are expressed during tendril development in grapevine. Plant Physiol 135:1491–1501

    Article  CAS  PubMed  Google Scholar 

  • Carmona MJ, Chaib J, Martinez-Zapater JM, Thomas MR (2008) A molecular genetic perspective of reproductive development in grapevine. J Exp Bot 59:2579–2596

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JL, Kopczak SD, Snustad DP, Silflow CD (1993) Semi-constitutive expression of an Arabidopsis thaliana α-tubulin gene. Plant Mol Biol 21:937–942

    Article  CAS  PubMed  Google Scholar 

  • Castro AJ, Carapito C, Zorn N, Magne C, Leize E, Van DA, Clement C (2005) Proteomic analysis of grapevine (Vitis vinifera L.) tissues subjected to herbicide stress. J Exp Bot 56:2783–2795

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Snustad DP, Carter JV (2001) Temporal and spatial expression patterns of TUB9, a β-tubulin gene of Arabidopsis thaliana. Plant Mol Biol 47:389–398

    Article  CAS  PubMed  Google Scholar 

  • Dawson PJ, Lloyd CW (1985) Identification of multiple tubulins in taxol microtubules purified from carrot suspension cells. EMBO J 4:2451–2455

    CAS  PubMed  Google Scholar 

  • Dixon DC, Seagull RW, Triplett BA (1994) Changes in the accumulation of α- and β-tubulin isotypes during cotton fiber development. Plant Physiol 105:1347–1353

    CAS  PubMed  Google Scholar 

  • Dixon DC, Meredith WR, Triplett BA (2000) An assessment of α-tubulin isotype modification in developing cotton fiber. Int J Plant Sci 161:63–67

    Article  CAS  PubMed  Google Scholar 

  • Evrard JL, Nguyen I, Bergdoll M, Mutterer J, Steinmetz A, Lambert AM (2002) A novel pollen-specific alpha-tubulin in sunflower: structure and characterization. Plant Mol Biol 49:611–620

    Article  CAS  PubMed  Google Scholar 

  • Fukushima N, Furuta D, Hidaka Y, Moriyama R, Tsujiuchi T (2009) Post-translational modifications of tubulin in the nervous system. J Neurochem 109:683–693

    Article  CAS  PubMed  Google Scholar 

  • Hammond JW, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76

    Article  CAS  PubMed  Google Scholar 

  • Han IS, Jongewaard I, Fosket DE (1991) Limited expression of a diverged beta-tubulin gene during soybean (Glycine max [L.] Merr.) development. Plant Mol Biol 16:225–234

    Article  CAS  PubMed  Google Scholar 

  • Hussey PJ, Gull K (1985) Multiple isotypes of alpha- and beta-tubulin in the plant Phaseolus vulgaris. FEBS Lett 181:113–118

    Article  CAS  Google Scholar 

  • Hussey PJ, Lloyd CW, Gull K (1988) Differential and developmental expression of beta-tubulins in a higher plant. J Biol Chem 263:5474–5479

    CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del FC, Alaux M, Di GG, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le CI, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Google Scholar 

  • Joyce CM, Villemur R, Snustad DP, Silflow CD (1992) Tubulin gene expression in maize (Zea mays L.): change in isotype expression along the developmental axis of seedling root. J Mol Biol 227:97–107

    Article  CAS  PubMed  Google Scholar 

  • Kerr GP, Carter JV (1990) Tubulin isotypes in rye roots are altered during cold acclimation. Plant Physiol 93:83–88

    Article  CAS  PubMed  Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed α-tubulin genes. Plant Cell 4:539–547

    Article  CAS  PubMed  Google Scholar 

  • Kreis TE (1987) Microtubules containing detyrosinated tubulin are less dynamic. EMBO J 6:2597–2606

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Liao G, Gundersen GG (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. Selective binding of kinesin to detyrosinated tubulin and vimentin. J Biol Chem 273:9797–9803

    Article  CAS  PubMed  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (eds) (2004) Biology of the Grapevine. Cambridge University Press, Cambridge

  • Nick P (2007) The plant cytoskeleton—new jobs for a versatile network. Protoplasma 230:125–127

    Article  CAS  PubMed  Google Scholar 

  • Persia D, Cai G, Del Casino C, Faleri C, Willemse MTM, Cresti M (2008) Sucrose synthase is associated with the cell wall of tobacco pollen tubes. Plant Physiol 147:1603–1618

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Giani S, Breviario D (1997) Molecular cloning of three rice alpha-tubulin isotypes: differential expression in tissues and during flower development. Biochim Biophys Acta 1354:19–23

    CAS  PubMed  Google Scholar 

  • Saravanan RS, Rose JKC (2004) A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues. Proteomics 4:2522–2532

    Article  CAS  PubMed  Google Scholar 

  • Schröder J, Stenger H, Wernicke W (2001) α-Tubulin genes are differentially expressed during leaf cell development in barley (Hordeum vulgare L.). Plant Mol Biol 45:723–730

    Article  PubMed  Google Scholar 

  • Smertenko A, Blume Y, Viklicky V, Draber P (1997a) Exposure of tubulin structural domains in Nicotiana tabacum microtubules probed by monoclonal antibodies. Eur J Cell Biol 72:104–112

    CAS  PubMed  Google Scholar 

  • Smertenko A, Blume Y, Viklicky V, Opatrny Z, Draber P (1997b) Post-translational modifications and multiple tubulin isoforms in Nicotiana tabacum L. cells. Planta 201:349–358

    Article  CAS  PubMed  Google Scholar 

  • Snustad DP, Haas NA, Kopczak SD, Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed beta-tubulin genes. Plant Cell 4:549–556

    Article  CAS  PubMed  Google Scholar 

  • Spokevicius AV, Southerton SG, MacMillan CP, Qiu D, Gan S, Tibbits JFG, Moran GF, Bossinger G (2007) Beta-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J 51:717–726

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan C, Mullins MG (1978) Control of flowering in the grapevine (Vitis vinifera L.): formation of inflorescences in vitro by isolated tendrils. Plant Physiol 61:127–130

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  • Towbin H, Özbey O, Zingel O (2001) An immunoblotting method for high-resolution isoelectric focusing of protein isoforms on immobilized pH gradients. Electrophoresis 22:1887–1893

    Article  CAS  PubMed  Google Scholar 

  • Vincent D, Ergul A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892

    Article  CAS  PubMed  Google Scholar 

  • Volodymyr VR, Nese S, Yaroslav B, Winfriede W (2007) Distinct tubulin genes are differentially expressed during barley grain development. Physiol Plant 131:571–580

    Article  Google Scholar 

  • Wang W, Scali M, Vignani R, Spadafora A, Sensi E, Mazzuca S, Cresti M (2003) Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis 24:2369–2375

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vignani R, Scali M, Sensi E, Cresti M (2004) Post-translational modifications of α-tubulin in Zea mays L. are highly tissue specific. Planta 218:460–465

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vignani R, Scali M, Cresti M (2006) A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27:2782–2786

    Article  CAS  PubMed  Google Scholar 

  • Whittaker DJ, Triplett BA (1999) Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiol 121:181–188

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Yang G, Kawaguchi K, Komatsu S (2003) Expression analyses of beta-tubulin isotype genes in rice. Plant Cell Physiol 44:1202–1207

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Li Y, Li L, Lin J, Zheng C, Zhang L (2009) Overexpression of PwTUA1, a pollen-specific tubulin gene, increases pollen tube elongation by altering the distribution of alpha-tubulin and promoting vesicle transport. J Exp Bot 60:2737–2749

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Prof. Mario Pezzotti (Dipartimento di Scienze, Tecnologie e Mercati della Vite e del Vino, University of Verona, Italy), Prof. Enrico Pè (Scuola Superiore Sant’Anna, Pisa, Italy) and Prof. Luca Bini (Dipartimento di Biologia Molecolare, University of Siena, Italy) for helpful suggestions and criticisms. This work was funded in the framework of the Vigna Project (http://www.vitisgenome.it/en/index.php5).

Conflict of interest statement

All authors declare that no financial/commercial conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Cai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Parrotta, L., Cai, G. & Cresti, M. Changes in the accumulation of α- and β-tubulin during bud development in Vitis vinifera L.. Planta 231, 277 (2010). https://doi.org/10.1007/s00425-009-1053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-009-1053-9

Keywords

  • Electrophoresis
  • Grapevine
  • Immunoblot
  • Protein extraction
  • Tubulin isoforms