Skip to main content
Log in

Effects of MULTIFOLIATE-PINNA, AFILA, TENDRIL-LESS and UNIFOLIATA genes on leafblade architecture in Pisum sativum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In order to dissect the genetic regulation of leafblade morphogenesis, 16 genotypes of pea, constructed by combining the wild-type and mutant alleles of MFP, AF, TL and UNI genes, were quantitatively phenotyped. The morphological features of the three domains of leafblades of four genotypes, unknown earlier, were described. All the genotypes were found to differ in leafblade morphology. It was evident that MFP and TL functions acted as repressor of pinna ramification, in the distal domain. These functions, with and without interaction with UNI, also repressed the ramification of proximal pinnae in the absence of AF function. The expression of MFP and TL required UNI function. AF function was found to control leafblade architecture multifariously. The earlier identified role of AF as a repressor of UNI in the proximal domain was confirmed. Negative control of AF on the UNI-dependent pinna ramification in the distal domain was revealed. It was found that AF establishes a boundary between proximal and distal domains and activates formation of leaflet pinnae in the proximal domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AF, af:

AFILA

AS1:

ASYMMETRIC LEAVES1

CRI, cri:

CRISPA

FLO:

FLORICAULA

LFY:

LEAFY

MFP, mfp:

MULTIFOLIATE-PINNA

STP, stp:

STAMINA-PISTILLOIDA

TL, tl:

TENDRIL-LESS

UNI, uni:

UNIFOLIATA

uni-tac:

Unifoliata-tendrilled acacia

References

  • Barkoulas M, Galinha C, Grigg SP, Tsiantis M (2007) From genes to shape: regulatory interactions in leaf development. Curr Opin Plant Biol 10:660–666

    Article  PubMed  CAS  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOX1 gene expression during development. Science 296:1858–1860

    Article  PubMed  CAS  Google Scholar 

  • Blixt S (1972) Mutation genetics in Pisum. Agri Hort Genet 30:1–293

    Google Scholar 

  • Byrne ME, Barley R, Curtis M, Arroya JM, Dunham M, Hudson A, Martienssen RA (2000) ASYMMETRIC LEAVES 1 mediates leaf patterning and stem cell formation in Arabidopsis. Nature 408:967–971

    Article  PubMed  CAS  Google Scholar 

  • Canales C, Grigg S, Tsiantis M (2005) The formation and patterning of leaves: recent advances. Planta 221:752–756

    Article  PubMed  CAS  Google Scholar 

  • Champagne C, Sinha N (2004) Compound leaves: equal to sum of their parts. Development 131:4401–4412

    Article  PubMed  CAS  Google Scholar 

  • Champagne CEM, Goliber TE, Wojciechowski MF, Mei RW, Townsley BT, Wang K, Paz MM, Geeta R, Sinha NR (2007) Compound leaf development and evolution in the legumes. Plant Cell 19:3369–3378

    Article  PubMed  CAS  Google Scholar 

  • Cote R, Gerrath JM, Posluszny U, Grodzinski B (1992) Comparative leaf development of conventional and semileafless peas (Pisum sativum). Can J Bot 70:571–580

    Article  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C, Thompson R, Bendahmane A (2008) UTILLdp, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    Article  PubMed  CAS  Google Scholar 

  • de Vilmorin P, Bateson W (1911) A case of gametic coupling in Pisum. Proc Royal Soc Lond Ser B Biol Sci 84:9–11

    Article  Google Scholar 

  • DeMason DA (2005) Extending Marx’s isogenic lines in search of Uni function. Pisum Genetics 37:10–14

    Google Scholar 

  • DeMason DA, Chawla R (2004a) Roles for auxin during morphogenesis of compound leaves of pea (Pisum sativum). Planta 218:435–448

    Article  PubMed  CAS  Google Scholar 

  • DeMason DA, Chawla R (2004b) Roles for auxin and Uni in leaf morphogenesis of afila genotype of pea (Pisum sativum). Int J Plant Sci 165:707–722

    Article  CAS  Google Scholar 

  • DeMason DA, Schmidt RJ (2001) Roles of the uni gene in shoot and leaf development of pea (Pisum sativum): phenotypic characterization and leaf development in the uni and uni-tac mutants. Int J Plant Sci 162:1033–1051

    Article  CAS  Google Scholar 

  • DeMason DA, Villani PJ (2001) Genetic control of leaf development in pea (Pisum sativum). Int J Plant Sci 162:493–511

    Article  CAS  Google Scholar 

  • Dengler N, Tsukaya H (2001) Leaf morphogenesis in dicotyledons: current issues. Int J Plant Sci 162:459–464

    Article  Google Scholar 

  • Eriksson G (1929) Erbkomplexe des Rotklees und der Erbsen. Z Pflanzenzuecht 40:445–475

    Google Scholar 

  • Floyd SK, Bowman JL (2006) Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants. Curr Biol 16:1911–1917

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg JB (1965) Afila, a new mutant in pea (Pisum sativum L.). Boletin Genetica 1:27–31

    Google Scholar 

  • Gorel FL, Berdnikov VA, Temnykh SV (1994) A deletion covering the Tl locus in Pisum sativum L. Genet Res 73:93–109

    Google Scholar 

  • Gould KS, Cutter EG, Young JPW (1986) Morphogenesis of the compound leaf in three genotypes of the pea, Pisum sativum. Can J Bot 64:1268–1276

    Article  Google Scholar 

  • Gould KS, Young JPW, Cutter EG (1992) L-system analysis of compound leaf development in Pisum sativum. Ann Bot 70:189–196

    Google Scholar 

  • Gould KS, Cutter EG, Young JPW (1994) The determination of pea leaves, leaflets, and tendrils. Am J Bot 81:352–360

    Article  Google Scholar 

  • Gourlay CW, Hofer JMI, Ellis THN (2000) Pea compound leaf architecture is regulated by interactions among the genes UNIFOLIATA, COCHLEATA, AFILA and TENDRIL-LESS. Plant Cell 12:1279–1294

    Article  PubMed  CAS  Google Scholar 

  • Hake S, Smith HMS, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of KNOX genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Hofer JMI, Ellis THN (1998) The genetic control of patterning in pea leaves. Trends Plant Sci 3:439–444

    Article  Google Scholar 

  • Hofer J, Turner I, Hellens R, Ambrose M, Mathews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    Article  PubMed  CAS  Google Scholar 

  • Hofer J, Gourlay C, Michael A, Ellis THN (2001) Expression of a class I knotted-1 like homeobox gene is down-regulated in pea compound leaf primordia. Plant Mol Biol 45:387–391

    Article  PubMed  CAS  Google Scholar 

  • Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, LeSignor C, Bandahmane A, Ellis N (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell Preview. http://www.aspb.org

  • Kidner CA, Timmermans MCP (2007) Mixing and matching pathways in leaf polarity. Curr Opin Plant Biol 10:13–23

    Article  PubMed  Google Scholar 

  • Kim M, Pham T, Hamidi A, McCormick S, Kuzoff RK, Sinha N (2003) Reduced leaf complexity in tomato wiry mutant suggests a role for PHAN and KNOX genes in generating compound leaves. Development 130:4405–4415

    Article  PubMed  CAS  Google Scholar 

  • Kujala V (1953) Felderbse bie welcher die ganze Blattspreite in Ranken umgewandelt ist. Arch Soc Zoo Bot Fennicae ‘Vanamo’ 8:44–45

    Google Scholar 

  • Kumar S, Rai SK, Pandey-Rai S, Srivastava S, Singh D (2004) Regulation of unipinnate character in the distal tendrilled domain of compound leaf-blade by the gene MULTIFOLIATE PINNA (MFP) in pea Pisum sativum. Plant Sci 166:929–940

    Article  CAS  Google Scholar 

  • Lamprecht H (1933) Ein unifoliata–Typus von Pisum mit gleichzeitiger Pistilloidie. Hereditas 18:56–64

    Article  Google Scholar 

  • Lijsebettens MV, Clarke J (1998) Leaf development in Arabidopsis. Plant Physiol Biochem 36:47–60

    Article  Google Scholar 

  • Lu B, Villani PJ, Watson JC, DeMason DA, Cooke TJ (1996) The control of pinna morphology in wildtype and mutant leaves of the garden pea (Pisum sativum L). Int J Plant Sci 157:659–673

    Article  Google Scholar 

  • Marx GA (1986) Tendrilled acacia (tac): an allele at the Uni locus. Pisum Newsl 18:49–52

    Google Scholar 

  • Marx GA (1987) A suit of mutants that modify pattern formation in pea leaves. Plant Mol Biol Rep 5:311–335

    Article  Google Scholar 

  • Marx GA (1989) Pea leaf architecture: the interaction of af, tl, and tac. Pisum Newslett 21:33

    Google Scholar 

  • Meicenheimer RD, Muchlbauer FJ, Hindman JL, Gritton ET (1983) Meristem characteristics of genetically modified pea (Pisum sativum) leaf primordia. Can J Bot 61:3430–3437

    Article  Google Scholar 

  • Micol JL, Hake S (2003) The development of plant leaves. Plant Physiol 131:389–394

    Article  PubMed  CAS  Google Scholar 

  • Murfet IC, Reid JB (1993) Developmental mutants. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, Wallingford, pp 165–216

    Google Scholar 

  • Polhill RM, van der Mesen LJG (1985) Taxonomy of grain legumes. In: Summerfield RJ, Roberts EH (eds) Grain legume crops. Lollius, London, pp 3–36

    Google Scholar 

  • Prajapati S, Kumar S (2001) Role of LLD, a new locus for leaflet/pinna morphogenesis in Pisum sativum. J Biosci 26:607–625

    Article  PubMed  CAS  Google Scholar 

  • Prajapati S, Kumar S (2002) Interaction of the UNIFOLIATA-TENDRILLED ACACIA gene with AFILA and TENDRIL-LESS genes in the determination of leaf blade growth and morphology in pea Pisum sativum. Plant Sci 162:713–721

    Article  CAS  Google Scholar 

  • Sharma B (1972) “Tendrilled acacia”, a new mutation controlling tendril formation in Pisum sativum. Pisum Newslett 4:50

    Google Scholar 

  • Sharma B (1981) Genetic pathway of foliage development in Pisum sativum. Pulse Crops Newslett 1:26–32

    Google Scholar 

  • Sharma B, Kumar S (1981) Discovery of one more allele of the tac-locus of Pisum sativum. Pulse Crops Newslett 1:21

    Google Scholar 

  • Smith LG, Hake S (1992) The initiation and determination of leaves. Plant Cell 4:1017–1027

    Article  PubMed  Google Scholar 

  • Tattersall AD, Turner L, Knox MR, Ambrose MJ, Ellis THN, Hofer JMI (2005) The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development. Plant Cell 17:1046–1060

    Article  PubMed  CAS  Google Scholar 

  • Taylor S, Hofer J, Murfet I (2001) Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences and leaves. Plant Cell 13:31–46

    Article  PubMed  CAS  Google Scholar 

  • Vassileva M (1979) Induced mutagenesis in Pisum. 1: genetic studies on the acacia mutant. Genet Sel 12:396–408

    Google Scholar 

  • Villani PJ, DeMason DA (1997) Roles of AF and TL genes in pea leaf morphogenesis: characterization of the double mutant (AFAFTLTL). Am J Bot 84:1323–1336

    Article  Google Scholar 

  • Villani PJ, DeMason DA (1999a) Roles of the AF and TL genes in pea leaf morphogenesis: leaf morphology and pinna anatomy of the heterozygotes. Can J Bot 77:611–622

    Article  CAS  Google Scholar 

  • Villani PJ, DeMason DA (1999b) The Af gene regulates timing and direction of major developmental events during leaf morphogenesis in garden pea (Pisum sativum). Ann Bot 83:117–128

    Article  CAS  Google Scholar 

  • Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore KS, Ratet P, Chen R (2008) Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol 146:1759–1772

    Article  PubMed  CAS  Google Scholar 

  • White OE (1917) Studies of inheritance in Pisum II: the present state of knowledge of heredity and variation in peas. Proc Am Philos Soc 56:487–588

    Google Scholar 

  • Yaxley JL, Jablonski W, Reid JB (2001) Leaf and flower development in pea (Pisum sativum L): mutants cochleata and unifoliata. Ann Bot 88:225–234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grateful thanks are due to the Director, NIPGR for providing facilities, Indian National Science Academy for sanctioning Senior Scientistship Scheme to SK and to Mukesh Jain for reading the manuscript. The help of Vinod Kumar and Sunil Kumar in field work is also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, R.K., Chaudhary, S., Kumar, A. et al. Effects of MULTIFOLIATE-PINNA, AFILA, TENDRIL-LESS and UNIFOLIATA genes on leafblade architecture in Pisum sativum . Planta 230, 177–190 (2009). https://doi.org/10.1007/s00425-009-0931-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0931-5

Keywords

Navigation