Skip to main content
Log in

Comparative expression and transcript initiation of three peach dehydrin genes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Dehydrin genes encode proteins with demonstrated cryoprotective and antifreeze activity, and they respond to a variety of abiotic stress conditions that have dehydration as a common component. Two dehydrins from peach (Prunus persica L. [Batsch.]) have been previously characterized; here, we describe the characterization of a third dehydrin from peach bark, PpDhn3, isolated by its response to low temperature. The expression of all three dehydrin genes was profiled by semi-quantitative reverse transcription PCR, and transcript initiation was mapped for all three genes using the RNA ligase-mediated 5′ rapid amplification of cDNA ends technique. PpDhn3 transcripts from bark collected in December or July, as well as transcripts from developing fruit, initiated at a single site. Although most of the PpDhn1 transcripts initiated at a similar position, those from young fruit initiated much further upstream of the consensus TATA box. Bark and fruit transcripts encoding PpDhn2 initiated ca. 30 bases downstream of a consensus TATA box; however, transcripts from ripe fruit initiated further upstream. Ripe fruit transcripts of PpDhn2 contain a 5′ leader intron which is predicted to add some 34 amino acids to the N-terminal methionine of the cognate protein when properly processed. Secondary structure prediction of sequences surrounding the TATA box suggests that conformational transitions associated with decreasing temperature contribute to the regulation of expression of the cold-responsive dehydrin genes. Taken together these results reveal new, unexpected levels of gene regulation contributing to the overall expression pattern of peach dehydrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE:

ABA response element

CBF:

C-repeat binding factor

CE:

Coupling element

CRT/DRE:

C-repeat/dehydration responsive element

DAB:

Days after bloom

DREB:

DRE binding factor

LEA:

Late embryogenesis abundant

RLM-5′RACE:

RNA ligase-mediated 5′ rapid amplification of cDNA ends

RT-PCR:

Reverse transcribed polymerase chain reaction

SD:

Short day photoperiod

NB:

Night break

TF:

Transcription factor

TSS:

Transcription start site

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH (1987) Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology 24:324–331

    Article  PubMed  CAS  Google Scholar 

  • Arora R, Wisniewski ME (1994) Cold acclimation in genetically related (sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch.). II. A 60-kilodalton bark protein in cold-acclimated tissues of peach is heat stable and related to the dehydrin family of proteins. Plant Physiol 105:95–101

    Article  PubMed  CAS  Google Scholar 

  • Artlip TS, Wisniewski ME (1997) Tissue-specific expression of a dehydrin gene in one-year-old ‘Rio Oso Gem’ peach trees. J Am Soc Hortic Sci 122:784–787

    Google Scholar 

  • Artlip TS, Callahan AM, Bassett CL, Wisniewski ME (1997) Seasonal expression of a dehydrin gene in sibling deciduous and evergreen genotypes of peach (Prunus persica [L.] Batsch.). Plant Mol Biol 33:61–70

    Article  PubMed  CAS  Google Scholar 

  • Atici Ö, Nalbantoğlu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bassett CL, Artlip TS, Callahan AM (2002) Characterization of the peach homologue of the ethylene receptor, PpETR1, reveals some unusual features regarding transcript processing. Planta 215:679–688

    Article  PubMed  CAS  Google Scholar 

  • Bassett CL, Wisniewski ME, Artlip TS, Norelli JL, Renaut J, Farrell RE Jr (2006) Global analysis of genes regulated by low temperature and photoperiod in peach bark. J Am Soc Hortic Sci 131:551–563

    CAS  Google Scholar 

  • Belaygue C, Wery J, Cowan AA, Tardieu F (1996) Contribution of leaf expansion, rate of leaf appearance and stolon branching to growth of plant leaf area under water deficit in white clover. Crop Sci 36:1240–1246

    Article  Google Scholar 

  • Bogeat-Triboulot M-B, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, Vinocur B, Witters E, Laukens K, Teichmann T, Altman A, Hausman J-F, Polle A, Kangasjärvi J, Dreyer E (2007) Changes of gene expression, protein profiles, ecophysiology and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol 143:876–892

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  CAS  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:5

    Article  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression. Ann Bot 89:803–811

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Pagès M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435

    Article  PubMed  CAS  Google Scholar 

  • Cai Q, Moore GA, Guy CL (1995) An unusual group 2 LEA gene family in citrus responsive to low temperature. Plant Mol Biol 29:11–23

    Article  PubMed  CAS  Google Scholar 

  • Callahan AM, Morgens PH, Cohen RA (1993) Isolation and initial characterization of cDNAs for mRNAs regulated during peach fruit development. J Am Hortic Sci 118:531–537

    CAS  Google Scholar 

  • Caruso A, Morabito D, Delmotte F, Kahlem G, Carpin S (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol Biochem 40:1033–1042

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ, Kortt AA, Chandler PM (1989) A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol 13:95–108

    Article  PubMed  CAS  Google Scholar 

  • Deng Z, Wang Y, Jiang K, Liu X, Wu W, Gao S, Lin J, Sun X, Tang K (2006) Molecular cloning and characterization of a novel dehydrin gene from Ginkgo biloba. Biosci Rep 26:203–215

    Article  PubMed  CAS  Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    Article  PubMed  CAS  Google Scholar 

  • Dure LIII (1993) Structural motifs in LEA proteins of higher plants. In: Close TJ, Bray EA (eds) Response of plants to cellular dehydration during environmental stress. Am Soc of Plant Physiol, Rockville, pp 91–103

    Google Scholar 

  • Dure LIII, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  Google Scholar 

  • Ehleringer JR, Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200

    Article  Google Scholar 

  • Farrell RE Jr, Bassett CL (2007) Multiple transcript initiation as a mechanism for regulating gene expression. In: Bassett CL (ed) Regulation of gene expression in plants: the role of transcript structure and processing. Springer, New York, pp 39–66

    Google Scholar 

  • Gilmore SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (2001) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  Google Scholar 

  • Gómez-Porras JL, Riaño-Pachón DM, Dreyer I, Mayer JE, Mueller-Roeber B (2007) Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics 8:260

    Article  PubMed  CAS  Google Scholar 

  • Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002) Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics 1:323–333

    Article  PubMed  CAS  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Wakasugi Y, Ikoma Y, Yano M, Ogawa K, Kuboi T (1999) cDNA sequence and expression of a cold-responsive gene in Citrus unshiu. Biosci Biotechnol Biochem 63:433–437

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118. doi:10.1186/1471-2164-9-118

    Article  PubMed  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  Google Scholar 

  • Joshi CP, Zhou H, Huang X, Chiang VL (1997) Context sequences of translation initiation codons in plants. Plant Mol Biol 35:993–1001

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135:1710–1717

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (2001) Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29:5226–5232

    Article  PubMed  CAS  Google Scholar 

  • Larsson KE, Nystrom B, Liljenberg C (2006) A phosphatidylserine decarboxylase activity in root cells of oat (Avena sativa) is involved in altering membrane phospholipid composition during drought stress acclimation. Plant Physiol Biochem 44:211–219

    Article  PubMed  CAS  Google Scholar 

  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1988) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  Google Scholar 

  • Liu Q, Kauga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabdiopsis. Plant Cell 10:1–17

    Google Scholar 

  • Maier CA, Zarnoch SJ, Dougherty PM (1998) Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation. Tree Physiol 18:11–20

    PubMed  Google Scholar 

  • Martz F, Sutinen M-L, Kiviniemi S, Palta JP (2006) Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimation. Tree Physiol 26:783–790

    PubMed  CAS  Google Scholar 

  • Maseda PH, Fernández RJ (2006) Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J Exp Bot 57:3963–3977

    Article  PubMed  CAS  Google Scholar 

  • Monteiro de Paula F, Pham Thi AT, Vieira da Silva J, Justin AM, Demandre C, Mazliak P (1990) Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Sci 66:185–193

    Article  CAS  Google Scholar 

  • Muthalif MM, Rowland LJ (1994) Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus). Plant Physiol 104:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, Struhl K, Weng Z (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17:1170–1177

    Article  PubMed  CAS  Google Scholar 

  • Peyret N (2000) Prediction of nucleic acid hybridization: parameters and algorithms. PhD dissertation, Wayne State University, Department of Chemistry, Detroit, MI

  • Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Fujita M, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707

    Article  PubMed  CAS  Google Scholar 

  • Rinne PL, Kaikuranta PL, van der Plas LH, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209:377–388

    Article  PubMed  CAS  Google Scholar 

  • SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    Article  PubMed  CAS  Google Scholar 

  • Sarnighausen E, Karlson DT, Zeng Y, Goldsvrough PB, Raghothama KG, Ashworth EN (2004) Characterization of novel YnSKn class of dehydrin-like cDNAs from cold acclimated red-osier dogwood (Cornus sericea L.) xylem. In: Arora R (ed) Adaptations and responses of woody plants to environmental stresses. The Haworth Press, Binghamton, pp 17–35

    Google Scholar 

  • Shen QJ, Ho T-HD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-Box and a novel cis-acting element. Plant Cell 7:295–307

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho T-HD (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Casaretto JA, Zhang P, Ho T-HD (2004) Functional definition of ABA-response complexes: the promoter units necessary and sufficient for ABA induction of gene expression in barley (Hordeum vulgare L.). Plant Mol Biol 54:111–124

    Article  PubMed  CAS  Google Scholar 

  • Shenk T (1981) Transcriptional control regions: nucleotide sequence requirements for initiation by RNA polymerase II and III. Curr Top Microbiol Immunol 93:25–46

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer V (2008) Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PloS Biol. doi:10.1371/journal.pbio.0060065

  • Smale ST, Baltimore D (1989) The ‘initiator” as a transcription control element. Cell 57:103–113

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Balsamo RA, Arvinte T, Lynch DV (1988) Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. PNAS 85:9026–9030

    Article  PubMed  CAS  Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • van Berkel J, Salamini F, Gebhardt C (1994) Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol 104:445–452

    Article  PubMed  Google Scholar 

  • van Zee K, Chen FQ, Hayes PM, Close TJ, Chen THH (1995) Cold-specific induction of a dehydrin gene family member in barley. Plant Physiol 108:1233–1239

    PubMed  Google Scholar 

  • Wang X-S, Zhu H-B, Jin G-L, Liu H-L, Wu W-R, Zhu J (2007) Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Sci 172:414–420

    Article  CAS  Google Scholar 

  • Welling A, Rinne P, Vihera-Aarnio A, Kontunen-Soppela S, Heino P, Palva ET (2004) Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch (Betula pubescens Ehrh.). J Exp Bot 55:507–516

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski ME, Bassett CL, Arora R (2004) Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of ‘Loring’ peach (Prunus persica). Tree Physiol 24:339–345

    PubMed  CAS  Google Scholar 

  • Wisniewski ME, Bassett CL, Renaut J, Farrell RE Jr, Tworkoski T, Artlip TS (2006) Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiol 26:575–584

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  PubMed  CAS  Google Scholar 

  • Yao K, Lockhart KM, Kalanack JJ (2005) Cloning of dehydrin coding sequences from Brassica juncea and Brassica napus and their low temperature-inducible expression in germinating seeds. Plant Physiol Biochem 43:83–89

    Article  PubMed  CAS  Google Scholar 

  • Yean D, Gralla J (1997) Transcription reinitiation rate: a special role for the TATA box. Mol Cell Biol 17:3809–3816

    PubMed  CAS  Google Scholar 

  • Zhang W, Ruan J, Ho TD, You Y, Yu T, Quatrano RS (2005) Cis-regulatory element based targeted gene finding: genome-wide identification of abscisic acid- and abiotic stress-responsive genes in Arabidopsis thaliana. Bioinformatics 21:3074–3081

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jing Ma for her expert technical assistance and Wilbur Hershberger for isolating and prepping the root samples. The authors would also like to express their appreciation to Dr. Angela Baldo for her advice and support regarding DNA secondary structure formation and computational biology, and to the National Institute of Agrobiological Sciences (NIAS) for providing the PLACE database without charge. This research was supported in part by a generous grant from NutriCore NorthEast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Leavel Bassett.

Additional information

C. L. Bassett, M. E. Wisniewski and R. E. Farrell Jr are co-senior authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassett, C.L., Wisniewski, M.E., Artlip, T.S. et al. Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230, 107–118 (2009). https://doi.org/10.1007/s00425-009-0927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0927-1

Keywords

Navigation