Skip to main content

Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L.

Abstract

Euphorbia tirucalli L., which is also known as a petroleum plant, produces a large amount of phytosterols and triterpenes. During their biosynthesis, squalene synthase converts two molecules of the hydrophilic substrate farnesyl diphosphate into a hydrophobic product, squalene. An E. tirucalli cDNA clone of a putative squalene synthase gene (EtSS) was isolated by RT-PCR followed by 5′- and 3′-RACE. The restriction fragment polymorphisms revealed by Southern blot analysis suggest that EtSS is a single copy gene. The glycine at the 287th residue from the N-terminal end of domain C has replaced alanine, which is conserved among all the other SS sequences deposited in the Genbank database. The N-terminal 380 residues of the hydrophilic sequence was expressed as a peptide-tagged protein in E. coli, and the resultant bacterial crude extract was incubated with farnesyl diphosphate and NADPH. GC-MS analysis showed that squalene was detected in the in vitro reaction mixture. E. tirucalli transgenic callus lines, in which EtSS was overexpressed, accumulated increased amounts of phytosterols as compared with that of wild type callus. RT-PCR analysis of wild type E. tirucalli plants revealed that the EtSS transcript accumulated in almost equal amounts in the stems and the leaves with a stalk, while a lower amount was detected in the roots. In situ hybridization analysis revealed that prominent antisense-probe signal was detected in the cambia within bundle sheathes. These results indicate that EtSS functions prominently in cambia, which are located adjacent to conductive tubes, and that this gene plays important roles in phytosterol accumulation in petroleum plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

35S:

Cauliflower mosaic virus 35S promoter

DIG:

Digoxigenin

FPP:

Farnesyl diphosphate

Et :

Euphorbia tirucalli

GA:

Gibberellic acid

GC-MS:

Gas chromatograph-mass spectrometer

GC-EIMS:

Gas chromatography-electron impact mass spectrometry

Nus:

N utilization substance protein

SC:

Sesquiterpene cyclase

SC :

Sesquiterpene cyclase gene

SE:

Squalene epoxidase

SE :

Squalene epoxidase gene

SS:

Squalene synthase

SS :

Squalene synthase gene

TIC:

Total ion chromatogram

Tnos:

Nopalin synthase gene terminator

Trx:

Thioredoxin

References

  • Agrios GN (1988) Plant pathology, 3rd edn. Academic Press, San Diego, pp 63–753

    Google Scholar 

  • Akamine S, Nakamori K, Chechetka SA, Banba M, Umehara Y, Kouch H, Izui K, Hata S (2003) cDNA cloning, mRNA expression, and mutational analysis of the squalene synthase gene of Lotus japonicus. Biochim Biophys Acta 1626:97–101

    PubMed  CAS  Google Scholar 

  • Busquets A, Keim V, Closa M, del Arco A, Boronat A, Arró M, Ferrer A (2008) Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Mol Biol 67:25–36

    Article  PubMed  CAS  Google Scholar 

  • Calvin M (1980) Hydrocarbons from plants: analytical methods and observations. Naturwissenschaften 67:525–533

    Article  CAS  Google Scholar 

  • Depeyre D, Isambert A, Sow D (1994) Des plantes a latex, source de méthane. Biofutur Juillet-Août: 25–28

  • Devarenne TP, Ghosh A, Chappell J (2002) Regulation of squalene synthase, a key enzyme of sterol biosynthesis, in tobacco. Plant Physiol 129:1095–1106

    Article  PubMed  CAS  Google Scholar 

  • Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 12:853–870

    Article  PubMed  CAS  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London, pp 223–277

    Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, Oxford, pp 134–151

    Google Scholar 

  • Haberlandt G (1965) Translocation of plastic materials, latex-tubes or laticiferous elements. In: Physiological plant anatomy (trans: Drummond M from the 4th German edn). Today & Tomorrow Book Agency, New Delhi, pp 336–345

  • Hanley KM, Nicolas O, Donaldson TB, Smith-Monroy C, Robinson GW, Hellmann GM (1996) Molecular cloning, in vitro expression and characterization of a plant squalene synthetase cDNA. Plant Mol Biol 30:1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–174

    Article  Google Scholar 

  • Hartmann MA, Benveniste P (1987) Plant membrane strols: isolation, identification and biosynthesis. Methods Enzymol 148:632–650

    Article  CAS  Google Scholar 

  • Hashimoto T (2001) Analyses of secondary metabolites in Euphorbia tirucalli L. Master’s thesis, Graduate School of Agriculture, Kyoto University, pp 1–11

  • Hata S, Sanmiya K, Kouchi H, Matsuoka M, Yamamoto N, Izui K (1997) cDNA cloning of squalene synthase genes from mono- and dicotyledonous plants, and expression of the gene in rice. Plant Cell Physiol 38:1409–1413

    PubMed  CAS  Google Scholar 

  • Hayashi H, Hirota A, Hiraoka N, Ikeshiro Y (1999) Molecular cloning and characterization of two cDNAs for Glycyrrhiza glabra squalene synthase. Biol Pharm Bull 22:947–950

    PubMed  CAS  Google Scholar 

  • Inoue T, Osumi T, Hata S (1995) Molecular cloning and functional expression of a cDNA for mouse squalene synthase. Biochim Biophys Acta 1260:49–54

    PubMed  Google Scholar 

  • Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504

    Article  PubMed  CAS  Google Scholar 

  • Kajikawa M, Yamato KT, Kohzu Y, Sakata R, Fukuzawa H, Uchida H, Ohyama K (2004) Expressed sequence tags from callus of Euphorbia tirucalli: A resource for genes involved in triterpenoid and sterol biosynthesis. Plant Biotechnol 21:349–353

    Google Scholar 

  • Kribii R, Arró M, del Arco A, González V, Balcells L, Delourme D, Ferrer A, Karst F, Boronat A (1997) Cloning and characterization of the Arabidopsis thaliana SQS1 gene encoding squalene synthase. Involvement of the C-terminal region of the enzyme in the channeling of squalene through the sterol pathway. Eur J Biochem 249:61–69

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Yoon YH, Kim HY, Shin DH, Kim DU, Lee IJ, Kim KU (2002) Cloning and expression of squalene synthase cDNA from hot pepper (Capsicum annuum L.). Mol Cells 13:436–443

    PubMed  CAS  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984

    Article  PubMed  CAS  Google Scholar 

  • LoGrasso PV, Soltis DA, Boettcher BR (1993) Overexpression, purification, and kinetic characterization of a carboxyl-terminal-truncated yeast squalene synthase. Arch Biochem Biophys 307:193–199

    Article  PubMed  CAS  Google Scholar 

  • McDonald AD, Warren FL, Williams JM (1949) The Euphorbia resins. Part I. Euphol. J Chem Soc S155–S157

  • Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21:115–127

    Google Scholar 

  • Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N, Shibata D, Wadano A, Sakata K, Ohta D (2006) Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Plant Cell 18:1008–1022

    Article  PubMed  CAS  Google Scholar 

  • Nakashima T, Inoue T, Oka A, Nishino T, Osumi T, Hata S (1995) Cloning, expression, and characterization of cDNAs encoding Arabidopsis thaliana squalene synthase. Proc Natl Acad Sci USA 92:2328–2332

    Article  PubMed  CAS  Google Scholar 

  • Nemethy EK, Calvin M (1983) Terpenoid biosynthesis in Euphorbia latex. In: Thomson WW, Mudd JB, Bibbs M (eds) Biosynthesis and function of plant lipids. Proc 6th Annual Symposium in Botany, University of California, Riverside, pp 216–228

  • Nemethy EK, Otvos JW, Calvin M (1979) Analysis of extractables from one Euphorbia. J Am Oil Chem Soc 56:957–960

    Article  Google Scholar 

  • Nielsen PE, Nishimura H, Otvos JW, Calvin M (1977) Plant crops as a source of fuel and hydrocarbon-like materials. Science 198:942–944

    Article  PubMed  CAS  Google Scholar 

  • Nielsen PE, Nishimura H, Liang Y, Calvin M (1979) Steroids from Euphorbia and other latex-bearing plants. Phytochemistry 18:103–104

    Article  CAS  Google Scholar 

  • Ohyama K, Uchida Y, Misawa N, Komano T, Fujita M, Ueno T (1984) Oil body formation in Euphorbia tirucalli L. cell suspension cultures. Plant Cell Rep 3:21–22

    Article  CAS  Google Scholar 

  • Pandit J, Danley DE, Schulte GK, Mazzalupo S, Pauly TA, Hayward CM, Hamanaka ES, Thompson JF, Harwood HJ Jr (2000) Crystal structure of human squalene synthase. A key enzyme in cholesterol biosynthesis. J Biol Chem 275:30610–30617

    Article  PubMed  CAS  Google Scholar 

  • Rizk AM (1987) The chemical constituents and economic plants of the Euphorbiaceae. Bot J Lin Soc 94:293–326

    Article  Google Scholar 

  • Saigo RH, Saigo BW (1983) Botany, principles and applications. Prentice-Hall, Englewood Cliffs, pp 121–136

  • Scassellati-Sforzolini G (1916) L’ Euphorbia Tirucalli L. In: Biblioteca agraria coloniale. Istituto Agricolo Coloniale Italiano, Firenze, pp 1–87

  • Seo JW, Jeong JH, Shin CG, Lo SC, Han SS, Yu KW, Harada E, Han JY, Choi YE (2005) Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry 66:869–877

    Article  PubMed  CAS  Google Scholar 

  • Shechter I, Guan G, Boettcher BR (1999) Squalene synthase. In: Cane DE (ed) Comprehensive natural products chemistry, vol. 2. Isoprenoids including carotenoids and steroids. Elsevier Science, Oxford, pp 245–266

    Google Scholar 

  • Simpson MG (2006) Plant systematics. Elsevier, Burlington, pp 137–226

    Google Scholar 

  • Sugiyama R, Oda H, Kurosaki F (2006) Expression of ASK1-like genes in arrested stamens of female Silene latifolia plants. J Plant Res 119:329–336

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Achnine L, Xu R, Matsuda SPT, Dixon RA (2002) A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J 32:1033–1048

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Kamide Y, Nagata N, Seki H, Ohyama K, Kato H, Masuda K, Sato S, Kato T, Tabata S, Yoshida S, Muranaka T (2004) Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J 37:750–761

    Article  PubMed  CAS  Google Scholar 

  • Tansey TR, Shechter I (2000) Structure and regulation of mammalian squalene synthase. Biochim Biophys Acta 1529:49–62

    PubMed  CAS  Google Scholar 

  • Taylor SE, Otvos J (1998) Melvin Calvin: fuels from plants. Ernest Orlando Lawrence Berkeley National Laboratory, LBNL-41469, pp 1–17

  • Uchida H, Sugiyama R, Nakayachi O, Takemura M, Ohyama K (2007) Expression of the gene for sterol-biosynthesis enzyme squalene epoxidase in parenchyma cells of the oil plant, Euphorbia tirucalli. Planta 226:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Vögeli U, Chappell J (1988) Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol 88:1291–1296

    Article  PubMed  Google Scholar 

  • Wareing PF, Hanney CEA, Digby J (1964) The role of endogenous hormones in cambial activity and xylem differentiation. In: Zimmermann MH (ed) The formation of wood in forest trees. Second Symposium held under the auspices of the Maria Moors Cabot Foundation for botanical research, Harvard Forest, April 1963, Academic Press, New York, pp 323–344

  • Yoshioka H, Yamada N, Doke N (1999) cDNA cloning of sesquiterpene cyclase and squalene synthase, and expression of the genes in potato tuber infected with Phytophthora infestans. Plant Cell Physiol 40:993–998

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Takahiko Hayakawa, Nobuya Koizuka, Mr. Yasuyuki Hayashi, and Ms. Mio Watanabe, from Plantech Research Institute, Yokohama, for the PCR primer design. The authors also thank Dr. Masashi Suzuki, from RIKEN Plant Science Center, Dr. Tatsuro Hamada and Ms. Akiko Nakade, from Ishikawa Prefectural University, Dr. Soichi Nakamura, from University of Ryukyus, for supporting this work. This work was performed as one of the technology development projects of the “Green Biotechnology Program” and was supported by a NEDO (New Energy and Industrial Technology Development Organization) grant donated to K. O., Ishikawa Prefectural University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanji Ohyama.

Additional information

Nucleotide sequence accession numbers are EtSS cDNA: AB433916, EtSS genome: AB433917.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Uchida, H., Yamashita, H., Kajikawa, M. et al. Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L.. Planta 229, 1243–1252 (2009). https://doi.org/10.1007/s00425-009-0906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0906-6

Keywords