Skip to main content
Log in

Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In land plants plastocyanin is indispensable and therefore copper (Cu) availability is a prerequisite for growth. When Cu supply is limited, higher plants prioritize the Cu delivery to plastocyanin by down-regulation of other Cu proteins. Arabidopsis has two plastocyanin genes (PETE1 and PETE2). PETE2 is the predominant isoform in soil-grown plants and in hydroponic cultures it is accumulated in response to Cu addition. It functions as a Cu sink when more Cu is available, in addition to its role as an electron carrier. PETE1 is not affected by Cu feeding and it is the isoform that drives electron transport under Cu-deficiency. Cu feeding rescued the defect in photosystem II electron flux (ΦPSII) in the pete1 mutant whereas ΦPSII was not changed in the pete2 mutant as Cu was added. Plants with mutations in the plastocyanin genes had altered Cu homeostasis. The pete2 mutant accumulated more Cu/Zn superoxide dismutase (CSD2 and CSD1) and Cu chaperone (CCS) whereas the pete1 mutant accumulated less. On the other hand, less iron superoxide dismutase (FeSOD) and microRNA398b were observed in the pete2 mutant, whereas more were accumulated in the pete1 mutant. Our data suggest that plastocyanin isoforms are different in their response to Cu and the absence of either one changes the Cu homeostasis. Also a small amount of plastocyanin is enough to support efficient electron transport and more PETE2 is accumulated as more Cu is added, presumably, to buffer the excess Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CCS:

Copper chaperone for superoxide dismutase

CSD1:

Cu/Zn superoxide dismutase 1

CSD2:

Cu/Zn superoxide dismutase 2

FeSOD:

Iron superoxide dismutase

ΦPSII :

Electron flux through photosystem II

miRNA:

MicroRNA

NPQ:

Non-photochemical quenching

PETE1:

Plastocyanin 1

PETE2:

Plastocyanin 2

PQ:

Plastoquinone

PSI:

Photosystem I

Rbc-L:

Large subunit of the ribulose-bisphosphate carboxylase

Rbc-S:

Small subunit of the ribulose-bisphosphate carboxylase

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andres-Colas N, Bodecker JR, Puig S, Penarrubia L, Pilon M (2005a) AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Lett 579:2307–2312

    Article  PubMed  CAS  Google Scholar 

  • Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005b) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–1251

    Article  PubMed  CAS  Google Scholar 

  • Alt J, Westhoff P, Sears BB, Nelson N, Hurt E, Hauska G, Herrmann RG (1983) Genes and transcripts for the polypeptides of the cytochrome b6/f complex from spinach thylakoid membranes. EMBO J 2:979–986

    PubMed  CAS  Google Scholar 

  • Andersson U, Heddad M, Adamska I (2003) Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Physiol 132:811–820

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  PubMed  CAS  Google Scholar 

  • Bichler J, Herrmann RG (1990) Analysis of the promotors of the single-copy genes for plastocyanin and subunit delta of the chloroplast ATP synthase from spinach. Eur J Biochem 190:415–426

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Briggs LM, Pecoraro VL, McIntosh L (1990) Copper-induced expression, cloning, and regulatory studies of the plastocyanin gene from the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 15:633–642

    Article  PubMed  CAS  Google Scholar 

  • Clarke AK, Campbell D (1996) Inactivation of the petE gene for plastocyanin lowers photosynthetic capacity and exacerbates chilling-induced photoinhibition in the cyanobacterium Synechococcus. Plant Physiol 112:1551–1561

    Article  PubMed  CAS  Google Scholar 

  • Cohu CM, Pilon M (2007) Regulation of superoxide dismutase expression by copper availability. Physiol Plant 129:747–755

    Article  CAS  Google Scholar 

  • Dimitrov MI, Donchev AA, Egorov TA (1993) Twin plastocyanin dimorphism in tobacco. Biochim Biophys Acta 1203:184–190

    PubMed  CAS  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilization from leaves of Arabidopsis thaliana during leaf senescence. J of Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1938) The water culture method for growing plants without soil. University of California, College of Agriculture Experimental Station Circular, Berkely, pp 347–353

    Google Scholar 

  • Joliot P, Joliot A (2006) Cyclic electron flow in C3 plants. Biochim Biophys Acta 1757:362–368

    Article  PubMed  CAS  Google Scholar 

  • Kieselbach T, Hagman A, Andersson B, Schroder WP (1998) The thylakoid lumen of chloroplasts. Isolation and characterization. J Biol Chem 273:6710–6716

    Article  PubMed  CAS  Google Scholar 

  • Kieselbach T, Bystedt M, Hynds P, Robinson C, Schroder WP (2000) A peroxidase homologue and novel plastocyanin located by proteomics to the Arabidopsis chloroplast thylakoid lumen. FEBS Lett 480:271–276

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  PubMed  CAS  Google Scholar 

  • Knoetzel J, Mant A, Haldrup A, Jensen PE, Scheller HV (2002) PSI-O, a new 10-kDa subunit of eukaryotic photosystem I. FEBS Lett 510:145–148

    Article  PubMed  CAS  Google Scholar 

  • Kusnetsov V, Bolle C, Lubberstedt T, Sopory S, Herrmann RG, Oelmuller R (1996) Evidence that the plastid signal and light operate via the same cis-acting elements in the promoters of nuclear genes for plastid proteins. Mol Gen Genet 252:631–639

    PubMed  CAS  Google Scholar 

  • Last DI, Gray JC (1990) Synthesis and accumulation of pea plastocyanin in transgenic tobacco plants. Plant Mol Biol 14:229–238

    Article  PubMed  CAS  Google Scholar 

  • Li HM, Theg SM, Bauerle CM, Keegstra K (1990) Metal-ion-center assembly of ferredoxin and plastocyanin in isolated chloroplasts. Proc Natl Acad Sci USA 87:6748–6752

    Article  PubMed  CAS  Google Scholar 

  • Li HH, Quinn J, Culler D, Girard-Bascou J, Merchant S (1996) Molecular Genetic Analysis of Plastocyanin Biosynthesis in Chlamydomonas reinhardtii. J Biol Chem 271:31283–31289

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Merchant S, Bogorad L (1987) Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. The EMBO Journal 6:2531–2535

    PubMed  CAS  Google Scholar 

  • Merchant SS, Allen MD, Kropat J, Moseley JL, Long JC, Tottey S, Terauchi AM (2006) Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochimica et Biophysica Acta 1763:578–594

    PubMed  CAS  Google Scholar 

  • Muller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pesaresi P, Scharfenberg M, Weigel M, Granlund I, Schroder WP, Finazzi G, Rappaport F, Masiero S, Furini A, Jahns P, Leister D (2008) Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol Plant: 1–13. doi:10.1093/mp/ssn041

  • Pfannschmidt T, Schutze K, Brost M, Oelmuller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130

    Article  PubMed  CAS  Google Scholar 

  • Philippar K, Geis T, Ilkavets I, Oster U, Schwenkert S, Meurer J, Soll J (2007) Chloroplast biogenesis: the use of mutants to study the etioplast–chloroplast transition. Proc Natl Acad Sci USA 104:678–683

    Article  PubMed  CAS  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9:256–263

    Article  PubMed  CAS  Google Scholar 

  • Quinn JM, Merchant S (1998) Copper-responsive gene expression during adaptation to copper deficiency. Methods Enzymol 297:263–279

    Article  PubMed  CAS  Google Scholar 

  • Quinn J, Li HH, Singer J, Morimoto B, Mets L, Kindle K, Merchant S (1993) The plastocyanin-deficient phenotype of Chlamydomonas reinhardtii Ac-208 results from a frame-shift mutation in the nuclear gene encoding preapoplastocyanin. J Biol Chem 268:7832–7841

    PubMed  CAS  Google Scholar 

  • Raven JA, Evans MC, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    Article  CAS  Google Scholar 

  • Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Schlarb-Ridley BG, Nimmo RH, Purton S, Howe CJ, Bendall DS (2006) Cytochrome c(6A) is a funnel for thiol oxidation in the thylakoid lumen. FEBS Lett 580:2166–2169

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Petersson UA, Haas BJ, Funk C, Schroder WP, Kieselbach T (2002) Proteome map of the chloroplast lumen of Arabidopsis thaliana. J Biol Chem 277:8354–8365

    Article  PubMed  CAS  Google Scholar 

  • Schutze K, Steiner S, Pfannschmidt T (2008) Photosynthetic redox regulation of the plastocyanin promoter in tobacco. Physiol Plant 133:557–565

    Article  PubMed  Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–1346

    Article  PubMed  CAS  Google Scholar 

  • Shosheva A, Donchev A, Dimitrov M, Kostov G, Toromanov G, Getov V, Alexov E (2005) Comparative study of the stability of poplar plastocyanin isoforms. Biochim Biophys Acta 1748:116–127

    PubMed  CAS  Google Scholar 

  • Takabe T, Takabe T, Akazawa T (1986) Biosynthesis of P700-chlorophyll a protein complex, plastocyanin, and cytochrome b(6)/f Complex. Plant Physiol 81:60–66

    Article  PubMed  CAS  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    Article  PubMed  Google Scholar 

  • Vorst O, Kock P, Lever A, Weterings B, Weisbeek P, Smeekens S (1993) The promoter of the Arabidopsis thaliana plastocyanin gene contains a far upstream enhancer-like element involved in chloroplast-dependent expression. Plant J 4:933–945

    Article  PubMed  CAS  Google Scholar 

  • Wastl J, Bendall DS, Howe CJ (2002) Higher plants contain a modified cytochrome c(6). Trends Plant Sci 7:244–245

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179:1033–1047

    Article  PubMed  CAS  Google Scholar 

  • Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F, Leister D (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem 278:31286–31289

    Article  PubMed  CAS  Google Scholar 

  • Wintermans JF, De Mots A (1965) Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochem Biophys Acta 109:448–453

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, McSpadden B, Pakrasi HB, Whitmarsh J (1992) Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem 267:19054–19059

    PubMed  CAS  Google Scholar 

  • Zhang L, Pakrasi HB, Whitmarsh J (1994) Photoautotrophic growth of the cyanobacterium Synechocystis sp. PCC 6803 in the absence of cytochrome c553 and plastocyanin. J Biol Chem 269:5036–5042

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I am grateful to Dr. Marinus Pilon and Dr. Elizabeth Pilon-Smits (Biology Department, Colorado State University, Fort Collins, CO, USA) for their advice, critical discussion, reading of the original and revised manuscripts and the use of resources and facilities in their laboratories. We thank Dr. Martin Weigel (Abteilung für Pflanzenzü chtung und Genetik, Max-Planck-Institut für Zühtungsforschung, Germany) for providing plastocyanin mutants. Chris Cohu (Biology Department, Colorado State University, Fort Collins, CO, USA) is acknowledged for his help in hydroponics setup and fluorescence analysis. This work was supported by United States National Science Foundation Grant NSF-IBN-0418993 to Marinus Pilon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Esmat Abdel-Ghany.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1 (TIFF 2560 kb)

Supplementary Fig. S2 (TIFF 6649 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Ghany, S.E. Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes. Planta 229, 767–779 (2009). https://doi.org/10.1007/s00425-008-0869-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0869-z

Keywords

Navigation