Skip to main content
Log in

Reciprocal chromosome translocation associated with TDNA-insertion mutation in Arabidopsis: genetic and cytological analyses of consequences for gametophyte development and for construction of doubly mutant lines

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Chromosomal rearrangements may complicate construction of Arabidopsis with multiple TDNA-insertion mutations. Here, crossing two lines homozygous for insertions in AtREV3 and AtPOLH (chromosomes I and V, respectively) and selfing F1 plants yielded non-Mendelian F2 genotype distributions: frequencies of +/++/+ and 1/1 2/2 progeny were only 0.42 and 0.25%. However, the normal development and fertility of double mutants showed AtPOLH-1 and AtREV3-2 gametes and 1/1 2/2 embryos to be fully viable. F2 distributions could be quantitatively predicted by assuming that F1 selfing produced inviable (1,2) and (+,+) gametophytes 86% of the time. Some defect intrinsic to the F1 selfing process itself thus appeared responsible. In selfing AtREV3 +/2 single mutants, imaging of ovules and pollen showed arrest or abortion, respectively, of half of gametophytes; however, gametogenesis was normal in AtREV3 2/2 homozygotes. These findings, taken together, suggested that T-DNA insertion at AtREV3 on chromosome I had caused a reciprocal I–V translocation. Spreads of meiosis I chromosomes in selfing AtREV3 +/2 heterozygotes revealed the predicted cruciform four-chromosome structures, which fluorescence in situ hybridization showed to invariably include both translocated and normal chromosomes I and V. Sequencing of the two junctions of T-DNA with AtREV3 DNA and the two with gene At5g59920 suggested translocation via homologous recombination between independent inverted-repeat T-DNA insertions. Thus, when crosses between TDNA-insertion mutants yield anomalous progeny distributions, TDNA-linked translocations should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

UV-B:

Ultraviolet radiation B

T-DNA:

Transferred DNA of the tumor-inducing plasmid

wt:

Wild-type

TAIR:

Arabidopsis information resource

FISH:

Fluorescence in situ hybridization

RB:

T-DNA right border

LB:

T-DNA left border

CEN:

Centromere

LETEL:

Left telomere

RETEL:

Right telomere

References

  • Campell BR, Song Y, Posch TE, Cullis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112:225–228

    Article  PubMed  CAS  Google Scholar 

  • Castle LA, Errampalli D, Atherton TL, Franzmann LH, Yoon ES, Meinke DW (1993) Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Gen Genet 241:504–514

    Article  PubMed  CAS  Google Scholar 

  • Christensen CA, Gorsich SW, Brown RH, Jones LG, Brown J, Shaw JM, Drews GN (2002) Mitochondrial GFA2 is required for synergid cell death in Arabidopsis. Plant Cell 14:2215–2232

    Article  PubMed  CAS  Google Scholar 

  • Curtis MJ, Hays JB (2007) Tolerance of dividing cells to replication stress in UVB-irradiated Arabidopsis roots: requirements for DNA translesion polymerases eta and zeta. DNA Repair (Amst) 6:1341–1358

    Article  CAS  Google Scholar 

  • Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    Article  PubMed  CAS  Google Scholar 

  • Drews GN, Lee D, Christensen CA (1998) Genetic analysis of female gametophyte development and function. Plant Cell 10:5–18

    Article  PubMed  CAS  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52:161–176

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Grelon M, Vezon D, Gendrot G, Pelletier G (2001) AtSPO11–1 is necessary for efficient meiotic recombination in plants. EMBO J 20:589–600

    Article  PubMed  CAS  Google Scholar 

  • Henry IM, Dilkes BP, Comai L (2007) Genetic basis for dosage sensitivity in Arabidopsis thaliana. PLoS Genet 3:e70

    Article  PubMed  Google Scholar 

  • Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5:R85

    Article  PubMed  Google Scholar 

  • Humann J, Andrews S, Ream W (2006) VirE1-mediated resistance to crown gall in transgenic Arabidopsis thaliana. Phytopathology 96:105–110

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen R, Snyder C, Jones JDG (1986) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:471–477

    Article  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Lafleuriel J, Degroote F, Depeiges A, Picard G (2004) A reciprocal translocation, induced by a canonical integration of a single T-DNA, interrupts the HMG-I/Y Arabidopsis thaliana gene. Plant Physiol Biochem 42:171–179

    Article  PubMed  CAS  Google Scholar 

  • Laufs P, Autran D, Traas J (1999) A chromosomal paracentric inversion associated with T-DNA integration in Arabidopsis. Plant J 18:131–139

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Humann JL, Pitrak JS, Cuperus JT, Parks TD, Whistler CA, Mok MC, Ream LW (2003) Translation start sequences affect efficiency of silencing of Agrobacterium tumefaciens T-DNA oncogenes. Plant Physiol 133:966–977

    Article  PubMed  CAS  Google Scholar 

  • Lysak M, Fransz P, Schubert I (2006) Cytogenetic analyses of Arabidopsis. Methods Mol Biol 323:173–186

    PubMed  Google Scholar 

  • Miranda A, Janssen G, Hodges L, Peralta EG, Ream W (1992) Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174:2288–2297

    PubMed  CAS  Google Scholar 

  • Nacry P, Camilleri C, Courtial B, Caboche M, Bouchez D (1998) Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics 149:641–650

    PubMed  CAS  Google Scholar 

  • O’Malley RC, Alonso JM, Kim CJ, Leisse TJ, Ecker JR (2007) An adapter ligation-mediated PCR method for high-throughput mapping of T-DNA inserts in the Arabidopsis genome. Nat Protoc 2:2910–2917

    Article  PubMed  CAS  Google Scholar 

  • Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  PubMed  CAS  Google Scholar 

  • Patterson EB (1978) Properties and uses of duplicate-deficient chromosome complements in maize. In: Walden DB (ed) Maize breeding and genetics. Wiley-Interscience, New York, pp 693–710

    Google Scholar 

  • Ray SM, Park SS, Ray A (1997) Pollen tube guidance by the female gametophyte. Development 124:2489–2498

    PubMed  CAS  Google Scholar 

  • Redei GP (1965) Non-Mendelian megagametogenesis in Arabidopsis. Genetics 51:857–872

    PubMed  CAS  Google Scholar 

  • Rine J (2005) Cell biology. Twists in the tale of the aging yeast. Science 310:1124–1125

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Lan VT, Hase Y, Shikazono N, Matsunaga T, Tanaka A (2003) Disruption of the AtREV3 gene causes hypersensitivity to ultraviolet B light and gamma-rays in Arabidopsis: implication of the presence of a translesion synthesis mechanism in plants. Plant Cell 15(9):2042–2057

    Article  PubMed  CAS  Google Scholar 

  • Schneitz K, Hulskamp M, Pruitt RE (1995) Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. Plant J 7:731–749

    Article  Google Scholar 

  • Siddiqi I, Ganesh G, Grossniklaus U, Subbiah V (2000) The dyad gene is required for progression through female meiosis in Arabidopsis. Development 127:197–207

    PubMed  CAS  Google Scholar 

  • Tax FE, Vernon DM (2001) T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. Plant Physiol 126:1527–1538

    Article  PubMed  CAS  Google Scholar 

  • Viss WJ, Pitrak JS, Humann J, Cook M, Driver J, Ream W (2003) Crown-gall-resistant transgenic apple trees that silence Agrobacterium tumefaciens oncogenes. Mol Breed 12:283–295

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation grant MCB 03455001 to J.B.H. We thank Dr. Jennifer Lorang and Buck Wilcox for critical reading of the manuscript, and Dr. Walter Ream for helpful general information about T-DNA insertions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Hays.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1. Ovule development in consecutive buds from three wt inflorescences (TIFF 6106 kb)

Supplementary Figure 2. Ovule development in consecutive buds from three AtREV3 2/2inflorescences (TIFF 6102 kb)

Supplementary Figure 3. Ovule development in consecutive buds from five AtREV3 +/2inflorescences (TIFF 6111 kb)

425_2008_868_MOESM4_ESM.doc

Supplementary Table 1. Non-Mendelian segregation in F3 progeny of selfed AtPOLH +/1 AtREV3 +/2 F2 heterozygotes (DOC 27 kb)

425_2008_868_MOESM5_ESM.doc

Supplementary Table 2. Summed allele combinations observed at AtREV3 or AtPOLH loci among all progeny of a selfed F2 AtPOLH +/1 AtREV3 +/2 double heterozygote (DOC 25 kb)

Supplementary Table 3. DNA sequence of TDNA-chromosomal junctions (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, M.J., Belcram, K., Bollmann, S.R. et al. Reciprocal chromosome translocation associated with TDNA-insertion mutation in Arabidopsis: genetic and cytological analyses of consequences for gametophyte development and for construction of doubly mutant lines. Planta 229, 731–745 (2009). https://doi.org/10.1007/s00425-008-0868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0868-0

Keywords

Navigation