Skip to main content
Log in

Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1

  • Original Paper
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cinnamoyl-CoA reductase 1 (CCR1, gene At1g15950) is the main CCR isoform implied in the constitutive lignification of Arabidopsis thaliana. In this work, we have identified and characterized two new knockout mutants for CCR1. Both have a dwarf phenotype and a delayed senescence. At complete maturity, their inflorescence stems display a 25–35% decreased lignin level, some alterations in lignin structure with a higher frequency of resistant interunit bonds and a higher content in cell wall-bound ferulic esters. Ferulic acid-coniferyl alcohol ether dimers were found for the first time in dicot cell walls and in similar levels in wild-type and mutant plants. The expression of CCR2, a CCR gene usually involved in plant defense, was increased in the mutants and could account for the biosynthesis of lignins in the CCR1-knockout plants. Mutant plantlets have three to four-times less sinapoyl malate (SM) than controls and accumulate some feruloyl malate. The same compositional changes occurred in the rosette leaves of greenhouse-grown plants. By contrast and relative to the control, their stems accumulated unusually high levels of both SM and feruloyl malate as well as more kaempferol glycosides. These findings suggest that, in their hypolignified stems, the mutant plants would avoid the feruloyl-CoA accumulation by its redirection to cell wall-bound ferulate esters, to feruloyl malate and to SM. The formation of feruloyl malate to an extent far exceeding the levels reported so far indicates that ferulic acid is a potential substrate for the enzymes involved in SM biosynthesis and emphasizes the remarkable plasticity of Arabidopsis phenylpropanoid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Col 0:

Columbia

CCR:

Cinnamoyl-CoA reductase

FeG:

Feruloyl glucose

FeM:

Feruloyl malate

FST:

Flanking sequence tag

F5H:

Ferulate -5-hydroxylase

GC-MS:

Gas chromatography-mass spectrometry

LC-MS:

Liquid chromatography-mass spectrometry

SE:

Standard error

SM:

Sinapoyl malate

TMS:

Trimethylsilylated

WS:

Wassilewskija

WT:

Wild-type

References

  • Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou J-P, Ullmann P, Pauly M, Lapierre C, Werck-Reichhart D (2006) A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2007) Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19:148–162

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Brunow G, Kilpelainen I, Sipila J, Syrjanen K, Karhunen P, Setala H, Rummakko P (1998) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. ACS Symposium series 697, Washington DC, pp 131–147

  • Cano-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34:351–362

    Article  PubMed  CAS  Google Scholar 

  • Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  PubMed  CAS  Google Scholar 

  • Chapple CC, Vogt T, Ellis BE, Somerville CR (1992) An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 4:1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Dauwe R, Morreel K, Goeminne G, Gielen B, Rohde A, Van Beeumen J, Ralph J, Boudet A-M, Kopka J, Rochange SF, Halpin C, Messens E, Boerjan W (2007) Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J 52(2):263–285

    Article  PubMed  CAS  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Dence C, Lin S (eds) Methods in lignin chemistry. Springer, Heidelberg, pp 33–61

    Google Scholar 

  • Do C-T, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007) Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

    Article  PubMed  CAS  Google Scholar 

  • Estelle MA, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206

    Article  CAS  Google Scholar 

  • Eudes A, Pollet B, Sibout R, Do C-T, Séguin A, Lapierre C, Jouanin L (2006) Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta 225:23–39

    Article  PubMed  CAS  Google Scholar 

  • Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    Article  PubMed  CAS  Google Scholar 

  • Fukushima RS, Hatfield RD (2001) Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 49:3133–3139

    Article  PubMed  CAS  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003a) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    PubMed  CAS  Google Scholar 

  • Goujon T, Sibout R, Eudes A, MacKay J, Jouanin L (2003b) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

    Article  CAS  Google Scholar 

  • Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu FC, Ralph J, Mila I, Barriere Y, Lapierre C, Jouanin L (2003c) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

    Article  PubMed  CAS  Google Scholar 

  • Grawe W, Bachhuber P, Mock HP, Strack D (1992) Purification and characterization of sinapoylglucose:malate sinapoyltransferase from Raphanus sativus L. Planta 187:236–241

    Article  Google Scholar 

  • Hatfield R, Fukushima RS (2005) Can lignin be accurately measured? Crop Sci 45:832–839

    Article  CAS  Google Scholar 

  • Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47:628–632

    Article  PubMed  CAS  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    Article  PubMed  CAS  Google Scholar 

  • Hendrawati O, Qingqiang Y, Kim HK, Linthorst HJM, Erkelens C, Lefeber AWM, Choi YH, Verpoorte R (2006) Metabolic differentiation of Arabidopsis treated with methyl jasmonate using nuclear magnetic spectroscopy. Plant Sci 170: 1118–1124

    Article  CAS  Google Scholar 

  • Hoffmann L, Maury S, Martz F, Geoffroy P, Legrand M (2003) Purification, cloning and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism. J Biol Chem 278:95–103

    Article  PubMed  CAS  Google Scholar 

  • Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem 43:2746–2751

    Article  CAS  Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11:429–441

    Article  PubMed  CAS  Google Scholar 

  • Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Lapierre C, Rolando C (1988) Thioacidolysis of pre-methylated lignin samples from pine compression and poplar woods. Holzforschung 42:1–4

    Article  CAS  Google Scholar 

  • Lapierre C, Pollet B, Rolando C (1995) New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermed 21:397–412

    Article  CAS  Google Scholar 

  • Laskar DD, Jourdes M, Patten AM, Helms GL, Davin LB, Lewis NG (2006) The Arabidopsis cinnamoyl CoA reductase irx4 mutant has a delayed but coherent (normal) program of lignification. Plant J 48:674–686

    Article  PubMed  CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57:1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Kohler A, Kauss H (1991) Biosynthesis of ferulic acid esters of plant cell wall polysaccharides in endomembranes from parsley cells. FEBS Lett 290:209–212

    Article  PubMed  CAS  Google Scholar 

  • Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C (1998) Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci USA 95:6619–6623

    Article  PubMed  CAS  Google Scholar 

  • Mouille G, Robin S, Lecomte M, Pagant S, Hofte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-transform infrared (FT-IR) microspectroscopy. Plant J 35:393–404

    Article  PubMed  CAS  Google Scholar 

  • Musha Y, Goring DAI (1974) Klason and acid soluble lignin content of hardwoods. Wood Sci 7:133–134

    CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  PubMed  CAS  Google Scholar 

  • O’Connell A, Holt K, Piquemal J, Grima-Pettenati J, Boudet A, Pollet B, Lapierre C, Petit-Conil M, Schuch W, Halpin C (2002) Improved paper pulp from plants with suppressed cinnamoyl-CoA reductase or cinnamyl alcohol dehydrogenase. Transg Res 11:495–503

    Article  CAS  Google Scholar 

  • Patten AM, Cardenas CL, Cochrane FC, Laskar DD, Bedgar DL, Davin LB, Lewis NG (2005) Reassessment of effects on lignification and vascular development in the irx4 Arabidopsis mutant. Phytochemistry 66:2092–2107

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Lapierre C, Myton K, O’Connell A, Schuch W, Grima-Pettenati J, Boudet AM (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13:71–83

    Article  CAS  Google Scholar 

  • Ralph J, Kim H, Lu F, Grabber J, Leplé J-C, Berrio Sierra J, Mir Derikvand M, Jouanin L, Boerjan W, Lapierre C (2007) Identification of the structure and origin of a thioacidolysis marker compound for ferulic acid incorporation into angiosperms lignins (and a pseudo marker compound for cinnamoyl-CoA reductase deficiency). Plant J. doi:10.1111/j.1365-313X.2007.03345x

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  PubMed  CAS  Google Scholar 

  • Robin S, Lecomte M, Höfte H, Mouille G (2003) A procedure for the clustering of cell wall mutants in the model plants Arabidopsis based on Fourier transform infrared (FT-IR) spectrometry. J Appl Stat 30:669–680

    Article  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reis B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  PubMed  CAS  Google Scholar 

  • Samson F, Brunaud V, Duchene S, De Oliveira Y, Caboche M, Lecharny A, Aubourg S (2004) FLAGdb++: a database for the functional analysis of the Arabidopsis genome. Nucleic Acids Res 32:D347–D350

    Article  PubMed  CAS  Google Scholar 

  • Saulnier L, Thibault J-F (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402

    Article  CAS  Google Scholar 

  • Sene CFB, McCann MC, Wilson RH, Grinter R (1994) Fourier-transform Raman and Fourier-transform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol 106:1623–1631

    PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) CINNAMYL ALCOHOL DEHYDROGENASE –C and –D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis. Plant Cell 17:2059–2076

    Article  PubMed  CAS  Google Scholar 

  • van der Rest B, Danoun S, Boudet AM, Rochange SF (2006) Down-regulation of cinnamoyl-CoA reductase in tomato (Solanum lycopersicum L.) induces dramatic changes in soluble phenolic pools. J Exp Bot 57:1399–1411

    Article  PubMed  CAS  Google Scholar 

  • Wadenbäck J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2007) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Trans Res. doi:10.1007/s11248–007-9113-z

Download references

Acknowledgments

We thank Fréderic Legée (AgroParisTech, UMR 206 Chimie Biologique) and Laurent Cézard (INRA, UMR 206 Chimie Biologique) for running the Klason lignin and the thioacidolysis analyses respectively and Christina Gofron (INRA Versailles) for Arabidopsis cultivation in the greenhouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir Derikvand, M., Sierra, J.B., Ruel, K. et al. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1. Planta 227, 943–956 (2008). https://doi.org/10.1007/s00425-007-0669-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0669-x

Keywords

Navigation