Planta

, Volume 227, Issue 3, pp 659–669 | Cite as

The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity

  • Jian Zhao
  • Bronwyn J. Barkla
  • Joy Marshall
  • Jon K. Pittman
  • Kendal D. Hirschi
Original Article

Abstract

Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.

Keywords

Arabidopsis Antiporter Calcium Salt tolerance Transport 

Abbreviations

35S

35S Cauliflower mosaic virus promoter

ABA

Abscisic acid

ACC

1-Aminocyclopropane-1-carboxylic acid

AHA

Arabidopsis H+-ATPase

CAX

Cation exchanger

MS

Murashige and Skoog medium

P-ATPase

Plasma membrane H+-ATPase

sCAX

N-terminal truncated cation exchanger

V-ATPase

Vacuolar-type H+-ATPase

References

  1. Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289:2338–2342PubMedCrossRefGoogle Scholar
  2. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. Methods Enzymol 8:115–118CrossRefGoogle Scholar
  3. An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J 49:718–728PubMedCrossRefGoogle Scholar
  4. Batistic O, Kudla J (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta 219:915–924PubMedCrossRefGoogle Scholar
  5. Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, Peer WA, Hazen SP, Murphy AS, Harper JF (2005) A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci USA 102:2649–2654PubMedCrossRefGoogle Scholar
  6. Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115PubMedCrossRefGoogle Scholar
  7. Bradshaw HD Jr (2005) Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytol 167:81–88PubMedCrossRefGoogle Scholar
  8. Brault M, Amiar Z, Pennarun AM, Monestiez M, Zhang Z, Cornel D, Dellis O, Knight H, Bouteau F, Rona JP (2004) Plasma membrane depolarization induced by abscisic acid in Arabidopsis suspension cells involves reduction of proton pumping in addition to anion channel activation, which are both Ca2+ dependent. Plant Physiol 135:231–243PubMedCrossRefGoogle Scholar
  9. Brett CL, Tukaye DN, Mukherjee S, Rao R (2005) The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405PubMedCrossRefGoogle Scholar
  10. Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951PubMedCrossRefGoogle Scholar
  11. Cheng N-H, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses, and reveals interplay among vacuolar transporters. Plant Cell 15:347–364PubMedCrossRefGoogle Scholar
  12. Cheng N-H, Pittman JK, Shigaki T, Lachmansingh J, LeClere S, Lahner B, Salt DE, Hirschi KD (2005) Functional association of Arabidopsis CAX1 and CAX3 is required for normal growth and ion homeostasis. Plant Physiol 138:2048–2060PubMedCrossRefGoogle Scholar
  13. Cheng N-H, Pittman JK, Zhu JK, Hirschi KD (2004) The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem 279:2922–2926PubMedCrossRefGoogle Scholar
  14. Dettmer J, Hong-Hermesdorf A, Stierhof YD, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730PubMedCrossRefGoogle Scholar
  15. DeWitt ND, Hong B, Sussman MR, Harper JF (1996) Targeting of two Arabidopsis H+-ATPase isoforms to the plasma membrane. Plant Physiol 112: 833–844PubMedCrossRefGoogle Scholar
  16. Epstein E (1972) Mineral nutrition in plants: principles and perspectives. Wiley, New YorkGoogle Scholar
  17. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(suppl):15–45Google Scholar
  18. Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634PubMedCrossRefGoogle Scholar
  19. Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214PubMedCrossRefGoogle Scholar
  20. Ghassemian M, Nambara E, Cutler S, Kawaide H, Kamiya Y, McCourt P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126PubMedCrossRefGoogle Scholar
  21. Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11:2113–2122PubMedCrossRefGoogle Scholar
  22. Hirschi KD (2004) The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol 136:2438–2442PubMedCrossRefGoogle Scholar
  23. Hirschi KD, Zhen R, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93:8782–8786PubMedCrossRefGoogle Scholar
  24. Kiegle E, Moore CA, Haselhoff J, Tester MA, Knight MR (2000) Cell-type-specific calcium responses to drought, salt and cold in the Arabidopsis root. Plant J 23:267–278PubMedCrossRefGoogle Scholar
  25. Leon P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116PubMedCrossRefGoogle Scholar
  26. Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121-125PubMedCrossRefGoogle Scholar
  27. Luo GZ, Wang HW, Huang J, Tian AG, Wang YJ, Zhang JS, Chen SY (2005) A putative plasma membrane cation/proton antiporter from soybean confers salt tolerance in Arabidopsis. Plant Mol Biol 59:809–820PubMedCrossRefGoogle Scholar
  28. Marschner H (1995) Mineral nutrition of higher plants. Academic, New YorkGoogle Scholar
  29. Marty F (1999) Plant vacuoles. Plant Cell 11:587–599PubMedCrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497CrossRefGoogle Scholar
  31. Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475PubMedCrossRefGoogle Scholar
  32. Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845PubMedCrossRefGoogle Scholar
  33. Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835PubMedCrossRefGoogle Scholar
  34. Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington A, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408PubMedCrossRefGoogle Scholar
  35. Pittman JK, Hirschi KD (2001) Regulation of CAX1, an Arabidopsis Ca2+/H+ antiporter: identification of an N-terminal autoinhibitory domain. Plant Physiol 127:1020–1029PubMedCrossRefGoogle Scholar
  36. Pittman JK, Hirschi KD (2003) Don’t shoot the (second) messenger: endomembrane transporters and binding proteins modulate cytosolic Ca2+ levels. Curr Opin Plant Biol 6:257–262PubMedCrossRefGoogle Scholar
  37. Pittman JK, Shigaki T, Hirschi KD (2005) Evidence of differential pH regulation of the Arabidopsis vacuolar Ca2+/H+ antiporters CAX1 and CAX2. FEBS Lett 579: 2648–265PubMedCrossRefGoogle Scholar
  38. Pittman JK, Shigaki T, Marshall JL, Morris JL, Cheng NH, Hirschi KD (2004) Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Mol Biol 56: 959–971PubMedCrossRefGoogle Scholar
  39. Raz V, Fluhr R (1992) Calcium requirement for ethylene-dependent responses. Plant Cell 4:1123–1130PubMedCrossRefGoogle Scholar
  40. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709PubMedCrossRefGoogle Scholar
  41. Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14(suppl):185–205Google Scholar
  42. Sakano K (1998) Revision of biochemical pH-stat: involvement of alternative pathway metabolisms. Plant Cell Physiol 39:467–473Google Scholar
  43. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(suppl):401–417Google Scholar
  44. Schiott M, Romanowsky SM, Baekgaard L, Jakobsen MK, Palmgren MG, Harper JF (2004) A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc Natl Acad Sci USA 101:9502–9507PubMedCrossRefGoogle Scholar
  45. Schumaker KS, Sze H (1986) Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity. J Biol Chem 261:12172–12178PubMedGoogle Scholar
  46. Shigaki T, Hirschi KD (2000) Characterization of CAX-like genes in plants: implications for functional diversity. Gene 257:291–298PubMedCrossRefGoogle Scholar
  47. Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX cation/H+ exchangers in plants. Plant Biol 8:419–429PubMedCrossRefGoogle Scholar
  48. Shigaki T, Cheng N-H, Pittman JK, Hirschi KD (2001) Structural determinant of Ca2+ transport in the Arabidopsis H+/Ca2+ antiporter CAX1. J Biol Chem 276:43152–43159PubMedCrossRefGoogle Scholar
  49. Shigaki T, Rees I, Nakhleh L, Hirschi KD (2006) Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 63:815–825PubMedCrossRefGoogle Scholar
  50. Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao C, Pantoja O, Bohnert HJ (2003) Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol 52:967–980PubMedCrossRefGoogle Scholar
  51. Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689PubMedCrossRefGoogle Scholar
  52. Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462PubMedCrossRefGoogle Scholar
  53. Ueoka-Nakanishi H, Tsuchiya T, Sasaki M, Nakanishi Y, Cunningham KW, Maeshima M (2000) Functional expression of mung bean Ca2+/H+ antiporter in yeast and its intracellular localization in the hypocotyl and tobacco cells. Eur J Biochem 267:3090–3098PubMedCrossRefGoogle Scholar
  54. Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277:2413–2418PubMedCrossRefGoogle Scholar
  55. Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (1999) Salt stress in Mesembryanthemum crystallinum L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta 207:426–435PubMedCrossRefGoogle Scholar
  56. Vitart V, Baxter I, Doerner P, Harper JF (2001) Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J 27:191–201PubMedCrossRefGoogle Scholar
  57. Yan F, Feuerle R, Schäffer S, Fortmeier H, Schubert S (1998) Adaptation of active proton pumping and plasmalemma ATPase activity of corn roots to low root medium pH. Plant Physiol 117:311–319PubMedCrossRefGoogle Scholar
  58. Young JC, DeWitt ND, Sussman MR (1998) A transgene encoding a plasma membrane H+-ATPase that confers acid resistance in Arabidopsis thaliana seedlings. Genetics 149:501–507PubMedGoogle Scholar
  59. Yoshida K, Kawachi M, Mori M, Maeshima M, Kondo M, Nishimura M, Kondo T (2005) The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of morning glory, Ipomoea tricolor cv. heavenly blue. Plant Cell Physiol 46:407–415PubMedCrossRefGoogle Scholar
  60. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedCrossRefGoogle Scholar
  61. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jian Zhao
    • 1
  • Bronwyn J. Barkla
    • 2
  • Joy Marshall
    • 3
  • Jon K. Pittman
    • 4
  • Kendal D. Hirschi
    • 1
    • 5
  1. 1.United States Department of Agriculture/Agricultural Research Service Children’s Nutrition Research CenterBaylor College of MedicineHoustonUSA
  2. 2.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico
  3. 3.Department of BiologyPrairie View A&M UniversityPrairie ViewUSA
  4. 4.Faculty of Life SciencesUniversity of ManchesterManchesterUK
  5. 5.Vegetable and Fruit Improvement CenterTexas A&M UniversityCollege StationUSA

Personalised recommendations