Skip to main content
Log in

The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

This study describes the molecular characterization of the genes BnSCT1 and BnSCT2 from oilseed rape (Brassica napus) encoding the enzyme 1-O-sinapoyl-β-glucose:choline sinapoyltransferase (SCT; EC 2.3.1.91). SCT catalyzes the 1-O-β-acetal ester-dependent biosynthesis of sinapoylcholine (sinapine), the most abundant phenolic compound in seeds of B. napus. GUS fusion experiments indicated that seed specificity of BnSCT1 expression is caused by an inducible promoter confining transcription to embryo tissues and the aleurone layer. A dsRNAi construct designed to silence seed-specifically the BnSCT1 gene was effective in reducing the sinapine content of Arabidopsis seeds thus defining SCT genes as targets for molecular breeding of low sinapine cultivars of B. napus. Sequence analyses revealed that in the allotetraploid genome of B. napus the gene BnSCT1 represents the C genome homologue from the B. oleracea progenitor whereas BnSCT2 was derived from the Brassica A genome of B. rapa. The BnSCT1 and BnSCT2 loci showed colinearity with the homologous Arabidopsis SNG2 gene locus although the genomic microstructure revealed the deletion of a cluster of three genes and several coding regions in the B. napus genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SCT:

1-O-sinapoyl-β-glucose:choline sinapoyltransferase

BAC:

Bacterial artificial chromosome

SE:

Sinapate esters

SC:

Sinapoylcholine

SG:

1-O-sinapoyl-β-glucose

References

  • Baumert A, Milkowski C, Schmidt J, Nimtz M, Wray V, Strack D (2005) Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalysed by enzymes of a serine carboxypeptidase-like acyltransferase family. Phytochemistry 66:1334–1345

    Article  PubMed  CAS  Google Scholar 

  • Bäumlein H, Wobus U, Pustell H, Kafatos FC (1986) The legumin gene family: structure of a B-type gene of Vicia faba and a possible legumin gene specific regulatory element. Nucleic Acids Res 14:2707–2720

    Article  PubMed  Google Scholar 

  • Bell JM (1993) Factors affecting the nutritional value of canola meal: a review. Can J Anim Sci 73:679–697

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IA, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  PubMed  CAS  Google Scholar 

  • Chen PY, Wang CK, Soong SC, To KY (2003) Complete sequence of the binary vector pBI121 and its application in cloning T-DNA insertion from transgenic plants. Mol Breed 11:287–293

    Article  CAS  Google Scholar 

  • Chuang C-F, Meyerowitz EMO (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J16:735–743

    Google Scholar 

  • D Halluin K, De Block M, Denecke J, Janssens J, Leemans J, Reynaerts A, Botterman J (1992) The bar gene as selectable and screenable marker in plant engineering. Methods Enzymol 216:415–426

    Article  CAS  Google Scholar 

  • Ellerström M, Stålberg K, Ezcurra I, Rask L (1996) Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm specific transcription. Plant Mol Biol 32:1019–1027

    Article  PubMed  Google Scholar 

  • Figueroa P, Léon G, Elorza A, Holuigue L, Araya A, Jordana X (2002) The four subunits of mitochondrial respiratory complex II are encoded by multiple nuclear genes and targeted to mitochondria in Arabidopsis thaliana. Plant Mol Biol 50:725–734

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Rider LW, Chapple C (2005) An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiol 138:1136–1148

    Article  PubMed  CAS  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Demus U, Teichmann C, Partier B, Wasternack C (1996) Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell Physiol 37:641–649

    PubMed  CAS  Google Scholar 

  • Hause B, Meyer K, Viitanen PV, Chapple C, Strack D (2002) Immunolocalization of 1-O-sinapoylglucose:malate sinapoyltransferase in Arabidopsis thaliana. Planta 215:26–32

    Article  PubMed  CAS  Google Scholar 

  • Hausmann L, Töpfer R (1999) Entwicklung von Plasmid-Vektoren. BioEngineering für Rapssorten nach Maß. Vorträge für Pflanzenzüchtung 45:155–173

    Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions:β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  CAS  Google Scholar 

  • Kesy LM, Bandurski RS (1990) Partial purification and characterization of insol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase). Plant Physiol 94:1598–1604

    Article  PubMed  CAS  Google Scholar 

  • Kridl JC, McCarter DW, Rose RE, Scherer DE, Knutzon DS, Radke SE, Knauf VC (1991) Isolation and characterization of an expressed napin gene from Brassica rapa. Seed Sci Res 1:209–219

    CAS  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    PubMed  CAS  Google Scholar 

  • Lehfeldt C, Shirley AM, Meyer K, Ruegger MO, Cusumano JC, Viitanen PV, Strack D, Chapple C (2000) Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism. Plant Cell 12:1295–1306

    Article  PubMed  CAS  Google Scholar 

  • Li AX, Steffens JC (2000) An acyltransferase catalyzing the formation of diacylglucose is a serine carboxypeptidase-like protein. Proc Natl Acad Sci USA 97:6902–6907

    Article  PubMed  CAS  Google Scholar 

  • Li AX, Eannetta N, Ghangas GS, Steffens JC (1999) Glucose polyester biosynthesis. Purification and characterization of a glucose acyltransferase. Plant Physiol 121:453–460

    Article  PubMed  Google Scholar 

  • Lorenzen M, Racicot V, Strack D, Chapple C (1996) Sinapic acid ester metabolism in wild type and a sinapoylglucose-accumulating mutant of Arabidopsis. Plant Physiol 112:1625–1630

    Article  PubMed  CAS  Google Scholar 

  • Luerßen H, Kirik V, Hermann P, Miséra S (1998) The FUSCA3 gene of Arabidopsis thaliana encodes a product with partial homology to VP1/ABI3-like regulatory proteins. Plant J 15:755–764

    Article  PubMed  Google Scholar 

  • McBride KE, Summerfelt KR (1990) Improved binary vectors for agrobacterium-mediated plant transformation. Plant Mol Biol 14:269–276

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW (1992) A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258:1647–1650

    Article  PubMed  Google Scholar 

  • Meinke DW, Franzmann LH, Nickle TC, Yeung EC (1994) Leafy Cotyledon mutants of Arabidopsis. Plant Cell 6:1049–1064

    Article  PubMed  CAS  Google Scholar 

  • Milkowski C, Baumert A, Schmidt D, Nehlin L, Strack D (2004) Molecular regulation of sinapate ester metabolism in Brassica napus: expression of genes, properties of the encoded proteins and correlation of enzyme activities with metabolite accumulation. Plant J 38:80–92

    Article  PubMed  CAS  Google Scholar 

  • Mock H-P, Strack D (1993) Energetics of the uridine 5′-diphosphoglucose: hydroxycinnamic acid acyl-glucosyltransferase reaction. Phytochemistry 32:575–579

    Article  CAS  Google Scholar 

  • Mock H-P, Vogt T, Strack D (1992) Sinapoylglucose:malate sinapoyltransferase activity in Arabidopsis thaliana and Brassica napus. Z Naturforsch 47C:680–682

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nair RB, Bastress KL, Ruegger MO, Denault JW, Chapple C (2004) The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell 16:544–554

    Article  PubMed  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ohlson R (1978) Functional properties of rapeseed oil and protein product. In: Proceedings 5th International Rapeseed Congress, Malmö, Sweden, pp 152–167

  • Outchkourov NS, Peters J, de Jong J, Rademakers W, Jongsma MA (2003) The promoter–terminator of chrysanthemum rbcS1directs very high expression levels in plants. Planta 216:1003–1012

    PubMed  CAS  Google Scholar 

  • Quiros CF, Grellet F, Sadowski J, Suzuki T, Li G, Wroblewski T (2001) Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI-Rps2-Ck1 chromosomal segment and related regions. Genetics 157:1321–1330

    PubMed  CAS  Google Scholar 

  • Reidt W, Wohlfarth T, Ellerström M, Czihal A, Tewes A, Ezcurra I, Rask L, Bäumlein H (2000) Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J 21:401–408

    Article  PubMed  CAS  Google Scholar 

  • Ruegger M, Chapple C (2001) Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism. Genetics 159:1741–1749

    PubMed  CAS  Google Scholar 

  • Sadowski J, Gaubier P, Delseny M, Quiros CF (1996) Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet 251:298–306

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schenck HR, Röbbelen G (1982) Somatic hybrids by fusion of protoplasts from Brassica oleracea and B. campestris. Z Pflanzenzücht 89:278–288

    Google Scholar 

  • Schmidt R (2002) Plant genome evolution: lessons from comparative genomics at the DNA level. Plant Mol Biol 48:21–37

    Article  PubMed  CAS  Google Scholar 

  • Schulze S, Mant A, Kossmann J, Lloyd JR (2004) Identification of an Arabidopsis inorganic pyrophosphatase capable of being imported into chloroplasts. FEBS Lett 565:101–105

    Article  PubMed  CAS  Google Scholar 

  • Shahidi F, Naczk M (1992) An overview of the phenolics of canola and rapeseed: chemical, sensory and nutritional significance. J Am Oil Chem Soc 69:917–924

    Article  CAS  Google Scholar 

  • Sheahan JJ (1996) Sinapate esters provide greater UV-B attenuation than flavonoids in Arabidopsis thaliana (Brassicaceae). Am J Bot 83:679–686

    Article  CAS  Google Scholar 

  • Shirley AM, Chapple C (2003) Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. J Biol Chem 278:19870–19877

    Article  PubMed  CAS  Google Scholar 

  • Shirley AM, McMichael CM, Chapple C (2001) The sng2 mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoyltransferase. Plant J 28:83–94

    Article  PubMed  CAS  Google Scholar 

  • Sozulski F (1979) Organoleptic and nutritional effects of phenolic compounds on oilseed protein products: a review. JAOCS 56:711–715

    Article  Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    Article  PubMed  CAS  Google Scholar 

  • Strack D, Knogge W, Dahlbender B (1983) Enzymatic synthesis of sinapine from 1-O-sinapoylglucose and choline by a cell-free system from developing seeds of red radish (Raphanus sativus L. var. sativus). Z Naturforsch 38c:21–27

    CAS  Google Scholar 

  • Sung DY, Vierling E, Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol 126:789–800

    Article  PubMed  CAS  Google Scholar 

  • Tkotz N, Strack D (1980) Enzymatic synthesis of sinapoyl-l-malate from 1-sinapoylglucose and l-malate by a protein preparation from Raphanus sativus cotyledons. Z Naturforsch 35c:835–837

    CAS  Google Scholar 

  • U N (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7:389–452

    Google Scholar 

  • van de Peer Y, de Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–70

    PubMed  Google Scholar 

  • van Engelen FA, Moltho JW, Conner AJ, Nap JP, Pereira A, Stiekema WJ (1995) pBinplus: an improved plant transformation vector based on pBin19. Transgenic Res 4:288–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Norddeutsche Pflanzenzucht Hans-Georg Lembke KG (NPZ), Hohenlieth, for supply of seed samples. This study was part of the research project “NAPUS 2000—Healthy Food from Transgenic Rape Seeds” and was financially supported by the Bundesministerium für Bildung und Forschung (BMBF). We thank Bettina Hause for helpful discussions during the course of this work and Claudia Horn and Sylvia Vetter for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Milkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weier, D., Mittasch, J., Strack, D. et al. The genes BnSCT1 and BnSCT2 from Brassica napus encoding the final enzyme of sinapine biosynthesis: molecular characterization and suppression. Planta 227, 375–385 (2008). https://doi.org/10.1007/s00425-007-0624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0624-x

Keywords

Navigation