Skip to main content
Log in

Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The constitutive and wound-inducible leucine aminopeptidases (LAP-N and LAP-A, respectively) of tomato encode 60-kDa proteins with 5-kDa presequences that resemble chloroplast-targeting peptides. Cell fractionation studies and immunoblot analyses of chloroplast and total proteins have suggested a dual location of the mature LAP-A proteins in the cytosol and the plastids. In this study, the subcellular localization of tomato LAPs was further investigated using in vitro chloroplast-targeting assays and immunocytochemical techniques at the light and TEM levels. In vitro-translated LAP-A1 and LAP-N preproteins were readily transported into pea chloroplasts and processed into mature proteins of 55 kDa indicating the presence of a functional chloroplast-targeting signal in the LAP-A1 and LAP-N protein precursors. In addition, a LAP polyclonal and a LAP-A-specific antisera were used to immunolocalize LAP proteins in leaves from healthy, wounded and methyl jasmonate (MeJA)-treated plants. Low levels of LAPs and/or LAP-like proteins were detected in leaves from unwounded plants. The LAP polyclonal antiserum, which detected LAP-A, LAP-N and LAP-like proteins, and the LAP-A specific antibodies, which detected only LAP-A, showed that LAP levels increased in leaf sections after wounding and MeJA treatments. LAP-A proteins were primarily detected within the chloroplasts of spongy and palisade mesophyll cells. The localization of LAP-A was distinct from the location of early wound-response proteins that are important in the biosynthesis of jasmonic acid or systemin and more similar to the late wound-response proteins with primary roles in defense. The importance of these findings relative to the potential roles of LAP-A in defense is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IgG:

Immunoglobulin

LAP:

Leucine aminopeptidase

MeJA:

Methyl jasmonate

RbcS:

Small subunit of ribulose bisphosphate carboxylase

TEM:

Transmission electron microscope

2D-PAGE:

Two-dimensional polyacrylamide gel electrophoresis

References

  • Amrani AE, Suire C, Camara B, Gaudillere JP, Couee I (1995) Purification and characterization of a novel aminopeptidase, plastidial alanine aminopeptidase, from the cotyledons of etiolated sugar beet seedlings. Plant Physiol 109:87–94

    PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidases in Beta vulgaris. Plant Physiol 24:1–15

    PubMed  CAS  Google Scholar 

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  PubMed  CAS  Google Scholar 

  • Bartling D, Weiler EW (1992) Leucine aminopeptidase from Arabidopsis thaliana—molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. Eur J Biochem 205:425–431

    Article  PubMed  CAS  Google Scholar 

  • Beninga J, Rock KL, Goldberg AL (1998) Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem 273:18734–18742

    Article  PubMed  CAS  Google Scholar 

  • Bruce BD, Perry S, Froehlish J, Keegstra K (1994) In vitro import of proteins into chloroplasts. Plant Mol Biol Man J1:1–15

    Google Scholar 

  • Cashmore AR (1983) Nuclear genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants. Plenum, New York, pp 29–38

    Google Scholar 

  • Chao WS, Pautot V, Holzer FM, Walling LL (2000) Leucine aminopeptidases: the ubiquity of LAP-N and the specificity of LAP-A. Planta 210:563–573

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Gonzales-Vigil E, Wilkerson CG, Howe GA (2007) Stability of plant defense proteins in the gut of insect herbivores. Plant Physiol 143:1954–1967

    Article  PubMed  CAS  Google Scholar 

  • Chua N-H, Schmidt GW (1978) Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 75:6110–6114

    Article  PubMed  CAS  Google Scholar 

  • Colloms SD (2004) Leucyl aminopeptidase PepA. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Elsevier, San Diego, pp 905–908

    Google Scholar 

  • Dammann C, Rojo E, Sánchez-Serrano JJ (1997) Abscisic acid and jasmonic acid activate wound-inducible genes in potato through separate, organ-specific signal transduction pathways. Plant J 11:773–782

    Article  PubMed  CAS  Google Scholar 

  • Desimone M, Kruger M, Wessel T, Wehofsky M, Hoffmann R, Wagner E (2000) Purification and characterization of an aminopeptidase from the chloroplast stroma of barley leaves by chromatographic and electrophoretic methods. J Chromatogr B 737:285–293

    Article  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    PubMed  CAS  Google Scholar 

  • Gallie DR (1993) Posttranscriptional regulation of gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 44:77–105

    Article  CAS  Google Scholar 

  • Gavel Y, von Heijne G (1990) A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett 261:455–458

    Article  PubMed  CAS  Google Scholar 

  • Gu Y-Q, Chao WS, Walling LL (1996a) Localization and post-translational processing of the wound-induced leucine aminopeptidase proteins of tomato. J Biol Chem 271:25880–25887

    Article  PubMed  CAS  Google Scholar 

  • Gu Y-Q, Pautot V, Holzer FM, Walling LL (1996b) A complex array of proteins related to the multimeric leucine aminopeptidase of tomato. Plant Physiol 110:1257–1266

    PubMed  CAS  Google Scholar 

  • Gu Y-Q, Holzer FM, Walling LL (1999) Over-expression, purification and biochemical characterization of the wound-induced leucine aminopeptidase of tomato. Eur J Biochem 263:726–735

    Article  PubMed  CAS  Google Scholar 

  • Harris CA, Hunte B, Krauss MR, Taylor A, Epstein LB (1992) Induction of leucine aminopeptidase by interferon-gamma identification by protein microsequencing after purification by preparative 2-dimensional gel electrophoresis. J Biol Chem 267:6865–6869

    PubMed  CAS  Google Scholar 

  • Hause B, Hause G, Kutter C, Miersch O, Wasternack C (2003) Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648

    Article  PubMed  CAS  Google Scholar 

  • Hoglund A, Donnes P, Blum T, Adolph HW, Kohlbacher O (2006) MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics 22:1158–1165

    Article  PubMed  CAS  Google Scholar 

  • Howe GA (2004) Jasmonates as signals in the wound response. J Plant Growth Regul 23:223–237

    CAS  Google Scholar 

  • Keegstra K, Bruce B, Hurley M, Li H-M, Perry S (1995) Targeting of proteins into chloroplasts. Physiol Plant 93:157–162

    Article  CAS  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjolander K, Gruissem W, Baginsky S (2004) The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14:354–362

    Article  PubMed  CAS  Google Scholar 

  • Kloetzel PM, Ossendorp F (2004) Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. Curr Opin Immunol 16:76–81

    Article  PubMed  CAS  Google Scholar 

  • Liu XQ, Jagendorf AT (1986) Neutral peptidases in the stroma of pea chloroplasts. Plant Physiol 81:603–608

    PubMed  CAS  Google Scholar 

  • Madureira HC, Da Cunha M, Jacinto T (2006) Immunolocalization of a defense-related 87 kDa cystatin in leaf blade of tomato plants. Environ Exp Bot 55:201–208

    Article  CAS  Google Scholar 

  • Matsui M, Fowler JH, Walling LL (2006) Leucine aminopeptidases: diversity in structure and function. Biol Chem 387:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Whelan J, Small I (2006) Recent surprises in protein targeting to mitochondria and plastids. Curr Opin Plant Biol 9:610–615

    Article  PubMed  CAS  Google Scholar 

  • Moura DS, Bergey DR, Ryan CA (2001) Characterization and localization of a wound-inducible type I serine-carboxypeptidase from leaves of tomato plants (Lycopersicon esculentum Mill). Planta 212:222–230

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Rost B (2005) Mimicking cellular sorting improves prediction of subcellular localization. J Mol Biol 348:85–100

    Article  PubMed  CAS  Google Scholar 

  • Narváez-Vásquez J, Ryan CA (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218:360–369

    Article  PubMed  CAS  Google Scholar 

  • Narváez-Vásquez J, Franceschi VR, Ryan CA (1993) Proteinase inhibitor synthesis in tomato plants—evidence for extracellular deposition in roots through the secretory pathway. Planta 189:257–266

    Article  Google Scholar 

  • Palmer DA, Bender CL (1995) Ultrastructure of tomato leaf tissue treated with the pseudomonad phytotoxin coronatine and comparison with methyl jasmonate. Mol Plant Microbe Interact 8:683–692

    CAS  Google Scholar 

  • Richly E, Leister D (2004) An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. Gene 329:11–16

    Article  PubMed  CAS  Google Scholar 

  • Schein AI, Kissinger JC, Ungar LH (2001) Chloroplast transit peptide prediction: a peek inside the black box. Nucleic Acids Res 29:E82

    Article  PubMed  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O, Ziegler J, Ryan CA, Wasternack C (2003) Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato—amplification in wound signalling. Plant J 33:577–589

    Article  PubMed  CAS  Google Scholar 

  • Sträter N, Lipscomb WN (2004) Leucyl aminopeptidase (animal). In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes. Elsevier, San Diego, pp 896–899

    Google Scholar 

  • Thayer SS, Choe HT, Rausser S, Huffaker RC (1988) Characterization and subcellular localization of aminopeptidases in senescing barley leaves. Plant Physiol 87:894–897

    PubMed  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCFcoi1 complex during jasmonate signaling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Tu C-J, Park S-Y, Walling LL (2003) Isolation and characterization of the neutral leucine aminopeptidase (LapN) of tomato. Plant Physiol 132:243–255

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535–546

    Article  Google Scholar 

  • Walker-Simmons M, Holländer-Czytko H, Andersen JK, Ryan CA (1984) Wound signals in plants: a systemic plant wound signal alters plasma membrane integrity. Proc Natl Acad Sci USA 81:3737–3741

    Article  PubMed  CAS  Google Scholar 

  • Walling LL, Gu Y-Q (1996) Plant aminopeptidases: occurrence, function and characterization. In: Taylor A (ed) Aminopeptidases. R.G. Landes, Georgetown, pp 174–219

    Google Scholar 

  • Walling LL (2004) Leucyl aminopeptidase (plant). In: Barrett AJ, Rawlings ND, Woesner JF (eds) Handbook of proteolytic enzymes. Elsevier, San Diego, pp 901–904

    Google Scholar 

  • Walling LL (2006) Recycling or regulation? The role of N-terminal modifying enzymes. Curr Opin Plant Biol 9:227–233

    Article  PubMed  CAS  Google Scholar 

  • Waters SP, Noble ER, Dalling MJ (1982) Intracellular localization of peptide hydrolases in wheat (Triticum aestivum L.) leaves. Plant Physiol 69:575–579

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF, Weeden NF (1989) Visulaization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 5–45

    Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562–565

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CFAMM staff for their helpful suggestions and Dr. Patricia Springer for the use of her Leica DMR light microscope. This research was supported by a National Science Foundation grant # IBN-9974612 to L.L.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Walling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narváez-Vásquez, J., Tu, CJ., Park, SY. et al. Targeting and localization of wound-inducible leucine aminopeptidase A in tomato leaves. Planta 227, 341–351 (2008). https://doi.org/10.1007/s00425-007-0621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0621-0

Keywords

Navigation