Skip to main content
Log in

Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript


Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others



Double-stranded RNA


Host-delivered RNA interference


Root knot nematode


RNA interference


Quantitative real time PCR


Small interfering RNA


  • Abad P, Favery B, Rosso MN, Castagnone-Sereno P (2003) Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4:217–224

    Article  CAS  Google Scholar 

  • Bakhetia M, Charlton W, Atkinson HJ, McPherson MJ (2005a) RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol Plant Microbe Interact 18:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Bakhetia M, Charlton WL, Urwin PE, McPherson MJ, Atkinson HJ (2005b) RNA interference and plant parasitic nematodes. Trends Plant Sci 10:362–367

    Article  PubMed  CAS  Google Scholar 

  • Bockenhoff A, Grundler FMW (1994) Studies on nutrient uptake by the beet cyst nematode Heterodera schachtii by in situ microinjection of fluorescent probes into the feeding structures in Arabidopsis thaliana. Parasitology 109:249–254

    Article  Google Scholar 

  • Chakravorty D, Botella JR (2007) Over-expression of a truncated Arabidopsis thaliana heterotrimeric G protein gamma subunit results in a phenotype similar to alpha and beta subunit knockouts. Gene 393:163–170

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Rehman S, Smant G, Jones JT (2005) Functional analysis of pathogenicity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Mol Plant Microbe Interact 18:621–625

    Article  PubMed  CAS  Google Scholar 

  • Davis EL, Hussey RS, Baum TJ (2004) Getting to the roots of parasitism by nematodes. Trends Parasitol 20:134–141

    Article  PubMed  Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408:325–330

    Article  PubMed  CAS  Google Scholar 

  • Gheysen G, Fenoll C (2002) Gene expression in nematode feeding sites. Ann Rev Phytopathol 40:191–219

    Article  CAS  Google Scholar 

  • Gheysen G, Vanholme B (2007) RNAi from plants to nematodes. Trends Biotechnol 25:89–92

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of Vir-region and T-region of the Agrobacterium-tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Hussey RS, Mims CW (1991) Ultrastructure of feeding tubes formed in giant cells induced in plants by the root-knot nematode Meloidogyne incognita. Protoplasma 162:99–107

    Article  Google Scholar 

  • Jung C, Wyss U (1999) New approaches to control plant parasitic nematodes. Appl Microbiol Biotechnol 51:439–446

    Article  CAS  Google Scholar 

  • Lipardi C, Wei Q, Paterson BM (2001) RNAi as random-degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297–307

    Article  PubMed  CAS  Google Scholar 

  • McCarter J, Bird D, Clifton S, Waterston R (2000) Nematode gene sequences, December 2000 Update. J Nematol 32:331–333

    CAS  PubMed  Google Scholar 

  • McDaniel CN, Hartnett LK, Sangrey KA (1996) Regulation of node number in day-neutral Nicotiana tabacum: a factor in plant size. Plant J 9:55–61

    Article  Google Scholar 

  • Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot 56:101–112

    PubMed  CAS  Google Scholar 

  • Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  CAS  Google Scholar 

  • Opperman C, Taylor C, Conkling M (1994) Root-knot nematode-directed expression of a plant root-specific gene. Science 263:221–223

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Purnell MP, Skopelitis DS, Roubelakis-Angelakis KA, Botella JR (2005) Modulation of higher-plant NAD(H)-dependent glutamate dehydrogenase activity in transgenic tobacco via alteration of beta subunit levels. Planta 222:167–180

    PubMed  CAS  Google Scholar 

  • Rosso MN, Dubrana MP, Cimbolini N, Jaubert S, Abad P (2005) Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol Plant Microbe Interact 18:615–620

    Article  PubMed  CAS  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang M-B, Stoutjesdijk PA, Green AM, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  PubMed  CAS  Google Scholar 

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Rookes JE, Chakravorty D, Armour D, Schenk PM, Botella JR (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiol 140:210–220

    Article  PubMed  CAS  Google Scholar 

  • Urwin P, Lilley C, Atkinson H (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15:747–752

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, Moller SG, Lilley CJ, McPherson MJ (1997) Continual green-fluorescent protein monitoring of Cauliflower Mosaic Virus 35S promoter activity in nematode-induced feeding cells in Arabidopsis thaliana. Mol Plant Microbe Interact 10:394–400

    Article  PubMed  CAS  Google Scholar 

  • Vaistij FE, Jones L, Baulcombe DC (2002) Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell 14:857–867

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant–nematode interactions. Curr Opin Plant Biol 6:327–333

    Article  PubMed  CAS  Google Scholar 

  • Yadav BC, Veluthambi K, Subramaniam K (2006) Host-generated double-stranded RNA induces RNAi in plant-parasitic nematodes and protects the host from infection. Mol Biochem Parasitol 148:219–222

    Article  PubMed  CAS  Google Scholar 

Download references


We thank Jenny Cobon (Queensland Department of Primary Industries and Fisheries) for technical assistance and advice with the nematode challenge experiments. We are grateful to the Washington University Genome Sequencing Centre Parasitic Nematode Sequencing Project for provision of the M. javanica Tis11 clone (rk10c12.y1), Dr. Peter Waterhouse (CSIRO) for the pHannibal plasmid and the silenced GUS transgenic tobacco lines and Dr. Bernie Carroll (University of Queensland) for the binary vector pUQC477. We thank Prof. Robert Birch and Lemise Kassim for their critical reading of the manuscript and Chris Brosnan for the advice on siRNA detection. This work was supported by a grant from the Australian Research Council (LP0211611) and Golden Circle Ltd.

Author information

Authors and Affiliations


Corresponding author

Correspondence to José R. Botella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairbairn, D.J., Cavallaro, A.S., Bernard, M. et al. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226, 1525–1533 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: