Skip to main content

Advertisement

Log in

Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare) leaf

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The aim of the present study was to isolate clones of genes which are likely to be involved in wax deposition on barley leaves. Of particular interest were those genes which encode proteins that take part in the synthesis and further modification of very long chain fatty acids (VLCFAs), the precursors of waxes. Previously, it had been shown that wax deposition commences within a spatially well-defined developmental zone along the growing barley leaf (Richardson et al. in Planta 222:472–483, 2005). In the present study, a barley microarray approach was used to screen for candidate contig-sequences (www.barleybase.org) that are expressed particularly in those leaf zones where wax deposition occurs and which are expressed specifically within the epidermis, the site of wax synthesis. Candidate contigs were used to screen an established in-house cDNA library of barley. Six full-length coding sequences clones were isolated. Based on sequence homologies, three clones were related to Arabidopsis CER6/CUT1, and these clones were termed HvCUT1;1, HvCUT1;2 and HvCUT1;3. A fourth clone, which was related to Arabidopsis Fiddlehead (FDH), was termed HvFDH1;1. These clones are likely to be involved in synthesis of VLCFAs. A fifth and sixth clone were related to Arabidopsis CER1, and were termed HvCER1;1 and HvCER1;2. These clones are likely to be involved in the decarbonylation pathway of VLCFAs. Semi-quantitative RT-PCR confirmed microarray expression data. In addition, expression analyses at 10-mm resolution along the blade suggest that HvCUT1;1 (and possibly HvCUT1;2) and HvCER1;1 are involved in commencement of wax deposition during barley leaf epidermal cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACP:

Acyl-carrier protein

FAE:

Fatty acid elongase

FAS:

Fatty acid synthase

GL1:

Glossy 1

GL8:

Glossy 8

KCR:

3(β)-ketoacyl-reductase

KCS:

3(β)-Ketoacyl-CoA synthase

LACS:

Long-chain acyl-CoA synthetase

POE:

Point of emergence

POLI:

Point of leaf insertion

VLCFA:

Very long chain fatty acid

References

  • Aarts MGM, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  PubMed  CAS  Google Scholar 

  • Barnes J, Percy K, Paul N, Jones P, McLauchlin C, Mullineaux P, Creissen G, Wellburn A (1996) The influence of UV-B radiation on the physiochemical nature of tobacco (Nicotiana tabacum L.) leaf surface. J Exp Bot 47:99–109

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from the contamination in biological science. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Breitling R, Herzyk P (2005) Rank-based methods as a non-parametric alternative of the t-statistic for the analysis of biological microarray data. J Bioinform Comput Biol 3:1171–1189

    Article  PubMed  CAS  Google Scholar 

  • Breitling R, Armengaud P, Amtmann A, Herzyk P (2004a) A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Lett 573:83–92

    Article  PubMed  CAS  Google Scholar 

  • Breitling R, Amtmann A, Herzyk P (2004b) Iterative group analysis (iGA): a simple tool to enhance sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics 5:34–41

    Article  PubMed  Google Scholar 

  • Broadwater JA, Haas JA, Fox BG (1998) The fundamental, versatile role of diiron enzymes in lipid metabolism. Fett/Lipid 100:103–111

    Article  CAS  Google Scholar 

  • Brown BA, Cloix C, Jiang GH, Kaiserli E, Herzyk P, Kliebenstein DJ, Jenkins GI (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102:18225–18230

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Goodwin SM, Boroff VL, Liu X, Jenks MA (2003) Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15:1170–1185

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Wanamaker SI, Caldo RA, Turner SM, Ashlock DA, Dickerson JA, Wing RA, Muehlbauer GJ, Kleinhofs A, Wise R (2004) A new resource for cereal genomics:22K barley GeneChip comes of age. Plant Physiol 134:960–968

    Article  PubMed  CAS  Google Scholar 

  • Costaglioli P, Joubès J, Garcia C, Stef M, Arveiler B, Lessire R, Garbay B (2005) Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim Biophys Acta 1734:247–258

    PubMed  CAS  Google Scholar 

  • Dietrich CR, Perera MADN, Yandeau-Nelson MD, Meeley RB, Nikolau BJ, Schnable PS (2005) Characterization of the GL8 paralogs reveals that the 3-ketoacyl reductase component of fatty acid elongase is essential for maize (Zea mays L.) development. Plant J 42:844–861

    Article  PubMed  CAS  Google Scholar 

  • Eigenbrode SD (1996) Plant surface waxes and insect behaviour. In: Kerstiens G (ed) Plant cuticles—an integrated functional approach. BIOS Scientific Publishers Limited, Oxford, pp 201–222

    Google Scholar 

  • Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affects long-chain lipid content on the surface of pollen and stems. Plant Cell 12:2001–2008

    Article  PubMed  CAS  Google Scholar 

  • Focke M, Gieginger E, Schwan S, Jänsch L, Binder S, Braun H-P (2003) Fatty acid biosynthesis in mitochondria of grasses: malonyl-coenzyme A is generated by a mitochondrial-localized acetylcoenzyme A carboxylase. Plant Physiol 133:875–884

    Article  PubMed  CAS  Google Scholar 

  • Fricke W, Flowers TJ (1998) Control of leaf cell elongation in barley. Generation rates of osmotic pressure and turgor, and growth-associated water potential gradients. Planta 206:53–65

    Article  CAS  Google Scholar 

  • Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol 129:374–388

    Article  PubMed  CAS  Google Scholar 

  • Hansen JD, Pyee J, Xia Y, Wen T-J, Robertson DS, Kolattukudy PE, Nikolau BJ, Schnable PS (1997) The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol 113:1091–1100

    Article  PubMed  CAS  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed  Google Scholar 

  • Jakobsen MK, Poulsen LR, Schulz A, Fleurat-Lessard P, Møller A, Husted S, Schiøtt M, Amtmann A, Palmgren MG (2005) Pollen development and fertilization in Arabidopsis is dependent on the MALE GAMETOGENESIS IMPAIRED ANTHERS gene encoding a type V P-type ATPase. Genes Develop 19:2757–2769

    Article  PubMed  CAS  Google Scholar 

  • James DW Jr, Lim E, Keller J, Plooy I, Ralston E, Dooner HK (1995) Direct tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319

    Article  PubMed  CAS  Google Scholar 

  • Jeffery IB, Higgins DJ, Culhane AC (2006) Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 7:359

    Article  PubMed  Google Scholar 

  • Jenks MA, Ashworth EN (1999) Plant epicuticular waxes: function, production and genetics. Hortic Rev 23:1–68

    CAS  Google Scholar 

  • Jenks MA, Joly RJ, Peters PJ, Rich PJ, Axtell JD, Ashworth EN (1994) Chemically induced cuticle mutation affecting epidermal conductance to water vapour and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol 105:1239–1245

    PubMed  CAS  Google Scholar 

  • Jenks MA, Tuttle HA, Eigenbrode SD, Feldman KA (1995) Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol 108:369–377

    PubMed  CAS  Google Scholar 

  • Jung KH, Han MJ, Lee DY, Lee YS, Schreiber L, Franke R, Faust A, Yephremov A, Saedler H, Kim YW, Hwang I, An G (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18:3015–3032

    Article  PubMed  CAS  Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    Article  CAS  Google Scholar 

  • Kerstiens G (2006) Water transport in plant cuticles: an update. J Exp Bot 57:2493–2499

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80

    Article  PubMed  CAS  Google Scholar 

  • Kunst L, Jetter R, Samuels AL (2006) Biosynthesis and transport of plant cuticular waxes. In: Riederer M, Muller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford, pp 182–215

    Google Scholar 

  • Kurata T, Kawabata-Awai C, Sakuradani S, Okada K, Wada T (2003) The YOREYORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant J 36:55–66

    Article  PubMed  CAS  Google Scholar 

  • Lundqvist U, Lundqvist A (1988) Mutagen specificity in barley for 1580 eceriferum mutants localized to 79 loci. Hereditas 108:1–12

    CAS  Google Scholar 

  • Millar AA, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  PubMed  CAS  Google Scholar 

  • Millar AA, Clemens S, Zachgo S, Giblin EM, Taylor DC, Kunst L (1999) CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838

    Article  PubMed  CAS  Google Scholar 

  • Richardson A, Franke R, Kerstiens G, Jarvis M, Schreiber L, Fricke W (2005) Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves. Planta 222:472–483

    Article  PubMed  CAS  Google Scholar 

  • Richardson A, Wojciechowski T, Franke R, Schreiber L, Kerstiens G, Jarvis M, Fricke W (2007) Cuticular permeance in relation to wax and cutin development along the growing barley (Hordeum vulgare) leaf. Planta 225:1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  PubMed  CAS  Google Scholar 

  • Rossak M, Smith M, Kunst L (2001) Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidospsis thaliana. Plant Mol Biol 46:717–725

    Article  PubMed  CAS  Google Scholar 

  • Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142:866–877

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Sayanova O, Beaudoin F, Libisch B, Castel A, Shewry PR, Napier JA (2001) Mutagenesis and heterologous expression in yeast of a plant Δ6-fatty acid desaturase. J Exp Bot 52:1581–1585

    Article  PubMed  CAS  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L, Schönherr J (1993) Mobilities of organic compounds in reconstituted cuticular wax of barley leaves: determination of diffusion coefficients. Pestic Sci 38:353–361

    Article  CAS  Google Scholar 

  • Schreiber L, Skrabs M, Hartmann K, Becker D, Cassagne C, Lessire R (2000) Biochemical and molecular characterization of corn (Zea mays L.) root elongases. Biochem Soc Trans 28:647–649

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L, Franke R, Lessire R (2005) Biochemical characterization of elongase activity in corn (Zea mays L.) roots. Phytochemistry 66:131–138

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33:12787–12794

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Gong J, Caldo RA, Nettleton D, Cook D, Wise RP, Dickerson JA (2005) BarleyBase—an expression profiling database for plant genomics. Nucleic Acids Res 33:D614–D618

    Article  PubMed  CAS  Google Scholar 

  • Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489

    Article  PubMed  CAS  Google Scholar 

  • Suh MC, Samuels AL, Jetter R, Kunst L, Pollard M, Ohlrogge J, Beisson F (2005) Cuticular lipid composition, surface structure, and gene expression in Arabidospis stem epidermis. Plant Physiol 139:1649–1665

    Article  PubMed  CAS  Google Scholar 

  • Tacke E, Korfhage C, Michel D, Maddaloni M, Motto M, Lanzani S, Salamini F, Doring H-P (1995) Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J 8:907–917

    PubMed  CAS  Google Scholar 

  • Todd J, Post-Beittenmiller D, Jaworski JG (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabodopsis thaliana. Plant J 17:119–130

    Article  PubMed  CAS  Google Scholar 

  • Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy AA, Riederer M (2004) Tomato fruit cuticular waxes and the effects on transpiration barrier properties: functional characterisation of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J Exp Bot 55:1401–1410

    Article  PubMed  CAS  Google Scholar 

  • von Wettstein-Knowles P (2007) Analyses of barley spike mutant waxes identify alkenes, cyclopropanes and internally branched alkanes with dominating isomers at carbon 9. Plant J 49:250–264

    Article  Google Scholar 

  • Xu X, Dietrich CR, Delledonne M, Xia Y, Wen T-J, Robertson DS, Nikolau BJ, Schnable PS (1997) Sequence analysis of the cloned glossy8 gene of maize suggests that it may encode for a β-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol 115:501–510

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Dietrich CR, Lessire R, Nikolau BJ, Schnable PS (2002) The endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme A elongase involved in the production of cuticular waxes. Plant Physiol 128:924–934

    Article  PubMed  CAS  Google Scholar 

  • Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals link between adhesion response and cell differentiation in the epidermis. Plant Cell 11:2187–2201

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), UK, Grant 61/P18283, and benefited also from a research grant of The Leverhulme Trust, UK (to WF). We would like to thank Tobias Wojciechowski (who was funded through a studentship by University of Paisley) for his help with constructing the barley cDNA library and John Christie (Glasgow University) for use of the electroporator. We would also like to thank two anonymous referees for constructive comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieland Fricke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 2723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardson, A., Boscari, A., Schreiber, L. et al. Cloning and expression analysis of candidate genes involved in wax deposition along the growing barley (Hordeum vulgare) leaf. Planta 226, 1459–1473 (2007). https://doi.org/10.1007/s00425-007-0585-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0585-0

Keywords

Navigation