Planta

, Volume 226, Issue 3, pp 559–570 | Cite as

Three-dimensional pore space quantification of apple tissue using X-ray computed microtomography

  • Fernando Mendoza
  • Pieter Verboven
  • Hibru K. Mebatsion
  • Greet Kerckhofs
  • Martine Wevers
  • Bart Nicolaï
Original Article

Abstract

The microstructure and the connectivity of the pore space are important variables for better understanding of the complex gas transport phenomena that occur in plant tissues. In this study, we present an experimental procedure for image acquisition and image processing to quantitatively characterize in 3D the pore space of apple tissues (Malus domestica Borkh.) for two cultivars (Jonagold and Braeburn) taken from the fleshy part of the cortex using X-ray computer microtomography. Preliminary sensitivity analyses were performed to determine the effect of the resolution and the volume size (REV, representative elementary volume analysis) on the computed porosity of apple samples. For comparison among cultivars, geometrical properties such as porosity, specific surface area, number of disconnected pore volumes and their distribution parameters were extracted and analyzed in triplicate based on the 3D skeletonization of the pore space (medial axis analysis). The results showed that microtomography provides a resolution at the micrometer level to quantitatively analyze and characterize the 3D topology of the pore space in apple tissue. The computed porosity was confirmed to be highly dependent of the resolution used, and the minimum REV of the cortical flesh of apple fruit was estimated to be 1.3 mm3. Comparisons among the two cultivars using a resolution of 8.5 μm with a minimum REV cube showed that in spite of the complexity and variability of the pore space network observed in Jonagold and Braeburn apples, the extracted parameters from the medial axis were significantly different (P-value < 0.05). Medial axis parameters showed potential to differentiate the microstructure between the two evaluated apple cultivars.

Keywords

Apple 3D image processing Medial axis analysis Microstructure Representative elementary volume X-ray microtomography 

Abbreviations

CCD

Charge-coupled device

CT

Computed tomography

REV

Representative elementary volume

ROI

Region of interest

SSA

Specific surface area

STD

Standard deviation

2D

Two-dimensional

3D

Three-dimensional

References

  1. Aguilera JM (2005) Why food microstructure? J Food Eng 67:3–11CrossRefGoogle Scholar
  2. Babin P, Della Valle G, Dendievel R, Lassoued N, Salvo L (2005) Mechanical properties of bread crumbs from tomography based finite element simulations. J Mat Sci 40:5867–5873CrossRefGoogle Scholar
  3. Baoping J (1999) Nondestructive technology for fruits grading. In: Proceedings of 99th international conference on agricultural engineering Beijing, December, pp IV127–IV133Google Scholar
  4. Barcelon EG, Tojo S, Watanabe K (1999) X-ray computed tomography for internal quality evaluation of peaches. J Agric Eng Res 73:323–330CrossRefGoogle Scholar
  5. Baumann H, Henze J (1983) Intercellular space volume of fruit. Acta Hortic 138:107–111Google Scholar
  6. Bear J (1972) Dynamics of fluids in porous media. Dover, New YorkGoogle Scholar
  7. Calbo AG, Sommer NF (1987) Intercellular volume and resistance to air flow of fruits and vegetables. J Am Soc Hortic Sci 112:131–134Google Scholar
  8. Celia M, Reeves P, Ferrand L (1995) Recent advances in pore scale models for multiphase flow in porous media. Rev Geophys Suppl 33:1049–1057CrossRefGoogle Scholar
  9. Cheng Q, Banks NH, Nicholson SE, Kingsley AM, Mackay BR (1998) Effects of temperature on gas exchange of ‘Braeburn’ apples. NZ J Crop Hortic Sci 26:299–306Google Scholar
  10. Dražeta L, Lang A, Alistair JH, Richard KV, Paula EJ (2004) Air volume measurement of ‘Braeburn’ apple fruit. J Exp Bot 55:1061–1069PubMedCrossRefGoogle Scholar
  11. Esau K (1977) Anatomy of seed plants. Wiley, New YorkGoogle Scholar
  12. Fromm JH, Sautter I, Matthies D, Kremer J, Schumacher P, Ganter C (2001) Xylem water content and wood density in spruce and oak trees detected by high-resolution computed tomography. Plant Physiol 127:416–425PubMedCrossRefGoogle Scholar
  13. Goffinet MC, Robinson TL, Lakso AN (1995) A comparison of ‘Empire’ apple fruit size and anatomy in unthinned and handthinned trees. J Hortic Sci 70:375–387Google Scholar
  14. Harker FR, Ferguson IB (1988) Calcium ion transport across discs of the cortical flesh of apple fruit in relation to fruit development. Physiol Plant 74:695–700CrossRefGoogle Scholar
  15. Harker FR, Hallet IC (1992) Physiological changes associated with development of mealiness of apple fruit during cool storage. HortScience 27:1291–1294Google Scholar
  16. Harker FR, Watkins CB, Brookfield PL, Miller MJ, Reid S, Jackson PJ, Bieleski RL, Bartley T (1999) Maturity and regional influences on watercore development and its postharvest disappearance in ‘Fuji’ apples. J Am Soc Hortic Sci 124:166–172Google Scholar
  17. Helmig R, Miller CT, Jakobs H, Class H, Hilpert M, Kees CE, Niessner J (2006) Multiphase flow and transport modeling in heterogeneous porous media. In: Di Bucchianico A, Mattheij RMM, Peletier MA (eds) Progress in industrial mathematics at ECMI 2004. Springer, Heidelberg, pp 449–485Google Scholar
  18. Ho QT, Verlinden BE, Verboven P, Vandewalle S, Nicolaï BM (2006) A permeation–diffusion-reaction model of gas transport in cellular tissue of plant materials. J Exp Bot (in press)Google Scholar
  19. Kader AA (1988) Respiration and gas exchange of vegetables. In: Weichmann J (ed) Postharvest physiology of vegetables. Marcel Dekker, New York, pp 25–43Google Scholar
  20. Khan AA, Vincent JFV (1990) Anisotropy of apple parenchyma. J Sci Food Agric 52:455–466CrossRefGoogle Scholar
  21. Khan AA, Vincent JFV (1993a) Compressive stiffness and fracture properties of apple and potato parenchyma. J Texture Stud 24:423–435CrossRefGoogle Scholar
  22. Khan AA, Vincent JFV (1993b) Anisotropy in the fracture properties of apple flesh as investigated by crack-opening tests. J Mat Sci 28:45–51CrossRefGoogle Scholar
  23. Kuroki S, Oshita S, Sotome I, Kawagoe Y, Seo Y (2004) Visualization of 3-D network of gas-filled intercellular spaces in cucumber fruit after harvest. Postharvest Biol Technol 33:255–262CrossRefGoogle Scholar
  24. Lammertyn J, Dresselaers T, Van Hecke P, Jancsók P, Wevers M, Nicolaï B (2003a) Analysis of the time course of core breakdown in ‘Conference’ pears by means of MRI and X-ray CT. Postharvest Biol Technol 29:19–28CrossRefGoogle Scholar
  25. Lammertyn J, Dresselaers T, Van Hecke P, Jancsók P, Wevers M, Nicolaï B (2003b) MRI and X-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears. Magn Reson Imaging 21:805–815CrossRefGoogle Scholar
  26. Lee T-C, Kashyap R, Chu C-N (1994) Building skeleton models via 3-d medial surface/axis thinning algorithms. CVGIP Graph Models Image Process 56:462–478CrossRefGoogle Scholar
  27. Lim KS, Barigou M (2004) X-ray micro-computed tomography of aerated cellular food products. Food Res Int 37:1001–1012CrossRefGoogle Scholar
  28. Lindquist WD (1999) 3DMA general users manual. State of New York at Stony Brook, New YorkGoogle Scholar
  29. Lindquist WD, Lee S-M, Coker D, Jones K, Spanne P (1996) Medial axis analysis of three dimensional tomographic images of drill core samples. J Geophys Res 101B:8297–8310CrossRefGoogle Scholar
  30. Mardia KV, Hainsworth TJ (1988) A spatial thresholding method for image segmentation. IEEE Trans Pattern Anal Mach Intell 6:919–927CrossRefGoogle Scholar
  31. Maire E, Buffière J-Y, Salvo L, Blandin JJ, Ludwig W, Létang JM (2001) On the application of X-ray microtomography in the field of material science. Adv Eng Mater 3:539–546CrossRefGoogle Scholar
  32. Maire E, Fazekas A, Salvo L, Dendievel R, Youssef S, Cloetens P, Letang J.M (2003) X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems. Compos Sci Technol 63:2431–2443CrossRefGoogle Scholar
  33. Mebatsion HK, Verboven P, Verlinden BE, Ho QT, Nguyen TA, Nicolaï B (2006a) Microscale modeling of fruit tissue using Voronoi tessellations. Comput Electron Agric 52:36–48CrossRefGoogle Scholar
  34. Mebatsion HK, Verboven P, Ho QT, Mendoza F, Verlinden BE, Nguyen TA, Nicolaï B (2006b) Modeling fruit microstructure using novel ellipse tessellations algorithm. Comp Modeling Eng Sci 14:1–14Google Scholar
  35. Oh W, Lindquist W (1999) Image thresholding by indicator kriging. IEEE Trans Pattern Anal Mach Intell 21:590–602CrossRefGoogle Scholar
  36. Rajapakse NC, Banks NH, Hewett EW, Cleland DJ (1990) Development of oxygen concentration gradients in flesh tissues of bulky plant organs. J Am Soc Hortic Sci 115:793–797Google Scholar
  37. Raven JA (1996) Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78:137–142CrossRefGoogle Scholar
  38. Ruess F, Stösser R (1993) Untersuchungen über das interzellularsystem bei apfelfrüchten mit methoden der digitalen bildverarbeitung. Gartenbauwissenschaft 58:197–205Google Scholar
  39. Russ JC (2005) Image analysis of food microstructure. Boca Raton, LondonGoogle Scholar
  40. Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffière JY, Ludwig W, Boller E, Bellet D, Josserond C (2003) X-ray micro-tomography an attractive characterisation technique in material science. Nucl Instrum Methods Phys Res B200:273–286Google Scholar
  41. Schotsmans W, Verlinden BE, Lammertyn J, Nicolaï BM (2004) The relationship between gas transport properties and the histology of apple. J Sci Food Agric 84:1131–1140CrossRefGoogle Scholar
  42. Soudain P, Phan Phuc A (1979) La diffusion des gaz dans les tissus vegetaux en rapport avec la structure des organes massifs. In: Perspectives nouvelles dans la conservation des fruits et legumes frais. Seminaire International, Centre de Recherches en Sciences Appliquées à l’Alimentation, L’Université du Québec à Montreal, Canada, pp 67–86Google Scholar
  43. Thovert J, Salles J, Adler P (1993) Computerized characterization of the geometry of real porous media: their discretization, analysis and interpretation. J Microsc 170:65–79Google Scholar
  44. Tu K, De Baerdemaeker J, Deltour R, de Barsy T (1996) Monitoring post-harvest quality of Granny Smith apple under simulated shelf-life conditions: destructive, non-destructive and analytical measurements. Int J Food Sci Technol 31:267–276CrossRefGoogle Scholar
  45. van Dalen G, Blonk H, van Aalst H, Hendriks CL (2003) 3D imaging of foods using X-ray microthomography. GIT Imaging Microsc 3:18–21Google Scholar
  46. Vincent JFV (1989) Relationships between density and stiffness of apple flesh. J Sci Food Agric 31:267–276Google Scholar
  47. Volz RK, Harker FR, Hallet IC, Lang A (2004) Development of texture in apple fruit—a biophysical perspective. Acta Hort 636:473–479Google Scholar
  48. Westwood MN, Batjer LP, Billingsley HD (1967) Cell size, cell number and fruit density of apples as related to fruit size, position in the cluster and thinning method. Proc Am Soc Hortic Sci 91:51–62Google Scholar
  49. Yamaki S, Ino M (1992) Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit. J Am Soc Hortic Sci 117:951–954Google Scholar
  50. Yearsley CW, Banks NH, Ganesh S, Cleland DJ (1996) Determination of lower oxygen limits for apple fruit. Postharvest Biol Technol 8:95–109CrossRefGoogle Scholar
  51. Yearsley CW, Banks NH, Ganesh S (1997a) Temperature effects on the internal lower oxygen limits of apple fruit. Postharvest Biol Technol 11:73–83CrossRefGoogle Scholar
  52. Yearsley CW, Banks NH, Ganesh S (1997b) Effects of carbon dioxide on the internal lower oxygen limits of apple fruit. Postharvest Biol Technol 12:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Fernando Mendoza
    • 1
  • Pieter Verboven
    • 1
  • Hibru K. Mebatsion
    • 1
  • Greet Kerckhofs
    • 2
  • Martine Wevers
    • 2
  • Bart Nicolaï
    • 1
  1. 1.BIOSYST, MeBioS, Faculty of Bioscience EngineeringKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Materials Performance and Non-Destructive Evaluation, Department of Metallurgy and Materials Engineering (MTM)Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations