Skip to main content
Log in

Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Osmotin is a pathogenesis-related protein exhibiting cryoprotective functions. Our aim was to understand whether it is involved in the cold acclimation of the olive tree (Olea europaea L.), a frost-sensitive species lacking dormancy. We exposed olive trees expressing tobacco osmotin gene under the 35S promoter (35S:osm) [in the same manner as wild type (wt) plants] to cold shocks in the presence/absence of cold acclimation, and monitored changes in programmed cell death (PCD), cytoskeleton, and calcium ([Ca2+]c) signalling. In the wt, osmotin was immunolocalized only in cold-acclimated plants, and in the tissues showing PCD. In the 35S:osm clones, the protein was detected also in the non-acclimated plants, and always in the tissues exhibiting PCD. In the non-acclimated wt protoplasts exposed to cold shock, a transient decrease in phallotoxin signal suggests a temporary disassembly of F-actin, a transient increase occurred instead in 35S:osm protoplasts exposed to the same shock. Transient increases in [Ca2+]c were observed only in the wt protoplasts. However, when F-actin was depolymerized by cytochalasin or latrunculin, and microtubules by colchicine, increase in [Ca2+]c also occurred in the 35S:osm protoplasts. Successive cold shocks caused transient rises in [Ca2+]c and transient decreases in the phallotoxin signal in wt protoplasts. No change occurred in [Ca2+]c occurred in the 35S:osm protoplasts. The phallotoxin signal transiently increased at the first shock, but did not change after the subsequent shocks, and an overall signal reduction occurred with shock repetition. Following acclimation, no cold shock-induced change in [Ca2+]c levels and F-actin signal occurred either in wt or 35S:osm protoplasts. The results show that osmotin is positively involved in the acclimation-related PCD, in blocking the cold-induced calcium signalling, and in affecting cytoskeleton in response to cold stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AFs:

Actin filaments

CD:

Cytochalasin D

Gd:

Gadolinium-chloride

LA:

Latrunculin A

MTs:

Microtubules

PCD:

Programmed cell death

ROS:

Reactive oxygen species

TMB-8:

8-(N,N-di-methylamino)octyl 3,4,5-trimethoxy-benzoate

35S:osm1, osm2, osm3 :

Transgenic clones overexpressing osmotin gene under CaMV 35S promoter, collectively referred as 35S:osm1-3

wt:

Wild type

References

  • Abdrakhamanova A, Wang QY, Khokhlova L, Nick P (2003) Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol 44:676–686

    Article  PubMed  CAS  Google Scholar 

  • Bitonti MB, Cozza R, Chiappetta A, Contento A, Minelli S, Ceccarelli M, Gelati MT, Maggini F, Baldoni L, Cionini PG (1999) Amount and organization of the heterochromatin in Olea europaea and related species. Heredity 83:188–195

    Article  PubMed  CAS  Google Scholar 

  • Brigas FJ, Ryyppo A, Lindstrom A, Stattin E (2001) Cold acclimation and deacclimation of shoots and roots of conifer seedlings. In: Brigas JF, Colombo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht, pp 57–88

    Google Scholar 

  • Bursch W, Hochegger K, Torok L, Marian B, Ellinger A, Hermann RS (2000) Autophagic and apoptotic types of programmed cell death exhibit different fates of cyoskeletal filaments. J Cell Sci 113:1189–1198

    PubMed  CAS  Google Scholar 

  • D’Angeli S, Malhò R, Altamura MM (2003) Low-temperature sensing in olive tree: calcium signalling and cold acclimation. Plant Sci 165:1303–1313

    Article  CAS  Google Scholar 

  • Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranovà E, Montagu MV, Inzé D, Breusegem FV (2000) Dual action of the active oxygen species during plant cell responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    Article  CAS  Google Scholar 

  • Evans DE (2004) Programmed cell death in response to abiotic stress. In: Gray J (ed) Programmed cell death in plants. CRC Press, Ohio, pp 1–20

    Google Scholar 

  • Fabbri A, Ferrini F (1989) Osservazioni anatomiche sui danni da freddo invernali in rami di piante adulte di ulivo. Act of the congress “Agrometeorologia, Agricoltura e Ambiente”, 21–23 November. Florence, Italy

  • Gray J (2004) Paradigms of the evolution of programmed cell death. In: Gray J (ed) Programmed cell death in plants. CRC Press, Ohio, pp 1–20

    Google Scholar 

  • Gunawardena AH, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:60–73

    Article  PubMed  CAS  Google Scholar 

  • Guy L (1990) Cold acclimation and freeezing stress tolerance: role of protein metabolism. Annu Rev Plant Mol Biol 41:187–223

    CAS  Google Scholar 

  • Guy RK, Scott ZA, Sloboda RD, Nicolaou KC (1996) Flourescent taxoids. Chem Biol 3:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Hajnoczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces Cor genes and enhances freezing tolerance. Science 280:104–106

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, Faivre-Moskalenko C, Esseling JJ, de Ruijter NC, Grierson CS, Dogterom M, Emons AMC (2002) Positioning of nuclei in Arabidopsis root hairs: an actin-regulated process of tip growth. Plant Cell 14:2941–2955

    Article  PubMed  CAS  Google Scholar 

  • Ketelaar T, de Ruijter NC, Emons AMC (2003) Unstable F-actin specifies the area and microtubule direction of cell expansion in Arabidopsis root hairs. Plant Cell 15:285–292

    Article  PubMed  CAS  Google Scholar 

  • Khokhlova LP, Olinevich OV, Raudaskoski M (2003) Reorganization of the microtubule and actin cytoskeleton in root cells of Triticum aestivum L. during low temperature and abscisic acid treatments. Cell Biol Int 27:211–212

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Knight MR (2000) Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 51:1679–1686

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant Cell 8:489–503

    Article  PubMed  CAS  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  PubMed  CAS  Google Scholar 

  • Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350

    Article  CAS  Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    Article  PubMed  CAS  Google Scholar 

  • Larcher W (1970) Kälteresistenz und Uberwinterungsvermögen mediterraner Holzpflanzen. Oecologia Plant 5:267–286

    Google Scholar 

  • LaRosa PC, Chen Z, Nelson DE, Singh NK, Hasegawa PM, Bressan RA (1992) Osmotin gene expression is posttranscriptionally regulated. Plant Physiol 100:409–415

    PubMed  CAS  Google Scholar 

  • Lecourieux D, Mazars C, Pauly N, Ranjeva R, Pugin A (2002) Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell 14:2627–2641

    Article  PubMed  CAS  Google Scholar 

  • Levine A (2004) Programmed cell death in plant response to biotic stress (pathogen attack). In: Gray J (ed) Programmed cell death in plants. CRC Press, Ohio, pp 213–250

    Google Scholar 

  • Liu D, Raghothama KG, Hasegawa PM, Bressan RA (1994) Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91:1888–1892

    Article  PubMed  CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    PubMed  CAS  Google Scholar 

  • Mazars C, Thion L, Thuleau P, Graziana A, Knight , Moreau M, Ranjeva R (1997) Organization in cytoskeleton controls the changes in cytosolic calcium of cold shocked Nicotiana plumbaginifoglia protoplasts. Cell Calcium 22:413–420

    Article  PubMed  CAS  Google Scholar 

  • Mazzolani G (1954) Su alcuni effetti del freddo in giovani rami di olivo (Olea europaea L.). Ann Bot 24:449–459

    Google Scholar 

  • Min K, Ha SC, Hasegawa PM, Bressan RA, Yun D, Kim KK (2004) Crystal structure of osmotin, a plant antifungal protein. Proteins 54:170–173

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narasimhan ML, Damsz B, Coca MA, Ibeas II, Yun D, Pardo JM, Hasegawa PM, Bressan RA (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8:921–930

    Article  PubMed  CAS  Google Scholar 

  • Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180

    Article  PubMed  CAS  Google Scholar 

  • Newton S, Duman JG (2000) An osmotin-like cryoprotective protein from bittersweet nightshade Solanum dulcamara. Plant Mol Biol 44:581–589

    Article  PubMed  CAS  Google Scholar 

  • Nick P (2000) Control of the response to low temperatures. In: Nick P (ed) Plant microtubules. Springer, Berlin Heidelberg New York , pp 121–135

    Google Scholar 

  • Obara K, Fukuda (2004) Programmed cell death in xylem differentiation. In: Gray J (ed) Programmed cell death in plants. CRC Press, Ohio, pp 131–154

    Google Scholar 

  • Orvar BL, SangWan V, Omann F, Dhindsa S (2000) Early step in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    Article  PubMed  CAS  Google Scholar 

  • Orzaez D, Granell A (2004) Programmed cell death in cell senescence. In: Gray J (ed) Programmed cell death in plants. CRC Press, Ohio, pp 155–193

    Google Scholar 

  • Palliotti A, Bongi G (1996) Freezing injury in the olive leaf and effects of mefluidide treatment. J Hortic Sci 71:57–63

    CAS  Google Scholar 

  • Plieth C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary mechanisms of signal perception. Plant J 18:491–497

    Article  PubMed  CAS  Google Scholar 

  • Risso A, Zanetti M, Gennaro R (1998) Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 189:107–115

    Article  PubMed  CAS  Google Scholar 

  • Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) “Canino” and “Moraiolo”. Plant Cell Rep 14:257–260

    Article  CAS  Google Scholar 

  • Rugini E, Gutierrez-Pesce P, Spampinato PL, Ciarmiello A, D’Ambrosio C (1999) New perspective for biotechnologies in olive breeding: morphogenesis, in vitro selection and gene transformation. Acta Hortic 474:107–110

    Google Scholar 

  • Sangwan V, Fould S, Singh J, Dhindsa RS (2001) Cold activation of Brassica napus BN115 promoter is mediated by structural changes in membranes and cytoskeleton, and require Ca2+ influx. Plant J 27:1–12

    Article  PubMed  CAS  Google Scholar 

  • Schwarzerova K, Pokorna J, Petrasek J, Zelenkova S, Capkova V, Janotova I, Opatrny Z (2003) The structure of cortical cytoplasm in cold-treated tobacco cells: the role of the cytoskeleton and the endomembrane system. Cell Biol Int 27:263–265

    Article  PubMed  CAS  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch ED, Regnier FE, Bressan RA (1987) Characterization of osmotin. Plant Physiol 85:529–536

    Article  PubMed  CAS  Google Scholar 

  • Smertenko AP, Bozhkov PV, Filonova LH, von Arnold S, Hussey PJ (2003) Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J 33:813–824

    Article  PubMed  CAS  Google Scholar 

  • Staiger CJ, Franklin-Tong VE (2003) The actin cytoskeleton is a target of the self-incompatibility response in Papaver rhoeas. J Exp Bot 54:103–113

    Article  PubMed  CAS  Google Scholar 

  • Takemoto D, Furuse K, Doke N, Kawakita K (1997) Identification of chitinase and osmotin-like protein as actin-binding proteins in suspension-cultured potato cells. Plant Cell Physiol 38:441–448

    PubMed  CAS  Google Scholar 

  • Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 393:13–18

    Article  PubMed  CAS  Google Scholar 

  • Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J 13:603–610

    Article  PubMed  CAS  Google Scholar 

  • Thomashow M (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125:89–93

    Article  PubMed  CAS  Google Scholar 

  • Wadhawan V, Karim ZA, Mukhopadhyay S, Gupta R, Dikshit M, Dash D (2004) Platelet storage under in vitro condition is associated with calcium-dependent apoptosis-like lesions and novel reorganization in platelet cytoskeleton. Arch Biochem Biophys 422:183–190

    Article  PubMed  CAS  Google Scholar 

  • Wieland T (1986) Phallotoxins. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zhu B, Chen TH, Li PH (1993) Expression of ABA-responsive osmotin-like protein genes during the induction of freezing tolerance in Solanum commersonii. Plant Mol Biol 21:729–735

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Chen TH, Li PH (1995) Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato. Plant Mol Biol 28:17–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. C. Scotta’ of the Università “La Sapienza” (Rome, Italy) for technical support, and Prof. E. Piccolella for helpful suggestions in flow cytometric analysis. We also thank Dr R. Bressan of Purdue University (USA) for the generous gift of the 35S:osmotin construct, Prof. E. Rugini of the Dipartimento di Produzione Vegetale, Università della Tuscia (Viterbo, Italy) for helpful suggestions in plant transformation and culture, and for providing materials for preliminary experiments, and Dr R. Malhò of Departamento de Biologia Vegetal, Lisboa (Portugal) for helpful suggestions in the evaluations of fluorescence signals. This work was supported by funds from the Università “La Sapienza” of Rome (Progetti Ateneo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Altamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Angeli, S., Altamura, M.M. Osmotin induces cold protection in olive trees by affecting programmed cell death and cytoskeleton organization. Planta 225, 1147–1163 (2007). https://doi.org/10.1007/s00425-006-0426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0426-6

Keywords

Navigation